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1 Introduction

Forecasts for the same target are often provided multiple times before the target is realized.

One of the most familiar examples relevant to everyday life is weather forecasts. The maximum

and minimum temperatures and precipitation for a given day are forecast a few days in

advance, and the public receives updates of these forecasts at least once each day before the

target day. These multi-horizon weather forecasts play a significant role in decision-making

processes related to a wide range of economic activities (see Dell et al. (2014)). For instance,

agricultural practices, such as irrigation schedules and timing for harvest operations, rely on

updated weather forecasts. Electricity generators receive electricity demand forecasts multiple

times before dispatches, and these demand forecasts are often updated as weather forecasts

are updated. To maximize the contributions of multi-horizon weather forecasts to planning

decisions, it is critical that forecast users understand the forecast revision structure across

horizons. Wang & Cai (2009) show that incorporating 7-day weather forecasts can increase

crop net profits by 20%, but that “perfect” two-week weather forecasts in the form of actual

weather data can achieve a 42% profit increase. Their study acknowledges the economic

significance of using longer-horizon weather forecasts in planning but also suggests that the

consequent economic benefits may depend on the trade-offs between the length of the forecast

horizon and the amount of relevant information contained in long-horizon forecasts. Therefore,

knowledge of whether forecast revisions contain information and how that information evolves

in a sequence of forecast revisions is crucial for forecast users to determine the optimal timing

for their decision making.

This paper provides a framework for forecast users, who may have little knowledge about

how forecasts are generated, to improve their understanding of the structure of forecast errors

and revisions across forecast horizons. Our modeling approach describes a general form of

multi-horizon forecast errors with three distinct horizon-specific processes: rational forecast
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error based on Muth’s (1961) rational expectation hypothesis, implicit forecast error based on

Mill’s (1957) implicit expectation hypothesis, and systematic forecast bias. Under this general

forecast error structure, we show that forecast revisions along horizons involve reducing the

rational forecast error by incorporating newly available information, adjusting for implicit

forecast error that is uncorrelated with the target, and correcting for systematic bias.

In the literature, the quality of multi-horizon forecasts is often assessed through rationality

tests. Nordhaus (1987) introduce the concept of weak forecast efficiency to evaluate whether

forecasts for the same target are rational. Weak-form efficiency requires that multi-horizon

forecasts undergo revisions that are independent of past revisions and past forecast errors. A

number of testing approaches have been built on this definition. Clements (1997) considers the

scenario where only a small number of fixed-event forecasts are available and proposes pooling

series of multi-horizon forecast across multiple target variables to conduct more powerful

tests of weak-form efficiency. Clements & Taylor (2001) extend this approach to allow for

non-normally distributed forecast revisions. Davies & Lahiri (1995, 1999) and Davies et al.

(2011) focus on a three-dimensional panel data approach in which multi-horizon forecasts are

produced by multiple forecasters and develop tests of rationality in a generalized method of

moments framework.

Deviating from the commonly used testing approach for rationality, this paper proposes

a modeling framework for evaluating a sequence of revised forecasts of the same target. We

address the benefits of utilizing our modeling approach from the following aspects.

First, because the specifications of forecasts subject to a single type of error are nested by

the specifications of multiple sources of error, model selection methods, such as information

criteria and log likelihood tests, can be employed to identify the best fitted error structure

of a given set of multi-horizon forecasts. When rational forecast error is estimated to be

effectively the sole error type, the multi-horizon forecasts are seen to be rational since revisions

are made purely for the purpose of adopting newly available information. Therefore, our
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modeling approach provides an alternative method to rationality tests to evaluate the overall

performance of multi-horizon forecasts.

Second, the estimation of our unobserved component model that explicitly specifies an

error structure provides the estimated magnitude of each source of forecast revision at all

horizons. Exploring the revision structure across horizons reveals the dynamics of how infor-

mation contained in the forecast revisions evolves when approaching the target time. Forecast

users are then able to identify the timing of the arrival of the largest amount of new informa-

tion, which may help them to evaluate the trade-offs between early planning and information

in long-horizon forecasts and to choose the optimal horizon forecast for making their plan-

ning decisions. The importance of understanding the changes in the information contents of

forecasts over horizons has also been addressed by Isiklar & Lahiri (2007).

We demonstrate our model-based multi-horizon forecast evaluation approach using a real-

time dataset of daily maximum temperature forecasts for Melbourne, Australia. Our results

suggest that the weather forecasts revised at a daily frequency up to 14 days before the

target day contain both rational and implicit errors. The composition of the sources for

forecast revisions changes along the forecast horizon, and the incorporation of newly available

information becomes the dominant attribute to revisions within a 7-day horizon.

We show the usefulness of our model-based evaluation approach by illustrating the value of

the major upgrade to the National Center for Environmental Prediction’s (NPEC) Numerical

Weather Prediction (NWP) model on May 22, 2012. Subsample estimation results show that

the upgrade provides more relevant information in the long-horizon forecasts and shifts the

timing of the largest information arrival one day earlier, from 6 days out before the upgrade

to 7 days out after the upgrade.

The remainder of this paper is structured as follows. In Section 2, we propose a model of

multi-horizon forecasts that contains multiple sources of forecast errors. In Section 3, we cast

our models of various error structures in a state space form. Section 4 conducts simulations.
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We evaluate multi-horizon weather forecasts as an empirical illustration of our approach in

Section 5, and Section 6 concludes this paper.

2 Multifarious errors in multi-horizon forecasts

In this section, we develop a model of multi-horizon forecasts that contain multiple sources

of error. We begin by outlining our assumptions and describing our most general model

specification. In the subsections that follow, we explain how the target variable and three

different types of forecast errors can be modeled as unobserved components.

2.1 A model of multi-horizon forecasts

Suppose that forecast users are given a sequence of numerical multi-horizon forecasts for the

same target event ỹt. Let the forecasts made at h periods earlier, i.e., at time t−h, be denoted

by ŷt|t−h. The longest-horizon forecasts are provided at horizon h = H, where H > 1. As the

target event approaches, forecast users observe a number of forecast revisions between two

adjacent updating points, dt|h−1,h = ŷt|t−(h−1) − ŷt|t−h, for the same target ỹt.

The target ỹt is assumed to be a covariance-stationary process, which can be generalized

to an MA form of white noise according to the Wold decomposition, that is

ỹt = µỹ +
∑∞

i=0 θiut−i,

where θ0 = 1,
∑∞

i=1 θ
2
i <∞ and ut ∼ i.i.d.(0, σ2u).

(1)

This moving average representation describes the data generating process as an information

accumulation process, and hence, is often used for the dynamics of the target event in the

fixed-event forecasting literature (see for example, Muth (1985), Isiklar & Lahiri (2007), and

Chang et al. (2013)). We re-parameterize the linear combination of white noise in equation
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(1) as
∞∑
i=0

θiut−i =

∞∑
i=0

ωi,t =

∞∑
i=0

σωiηωi,t , (2)

where ηωi,t ∼ N(0, 1) and are uncorrelated across time and horizons. Therefore,
∑∞

i=0 ωi,t

represents the cumulative effect of all past unanticipated shocks in the realization of ỹt, and at

each of the i periods away from the target time t, the effect of the shock ωi,t ∼ i.i.d.N(0, σ2ωi).

Combining equations (1) and (2), the target event ỹt with a finite sample can be expressed as

ỹt = µỹ +
t−1∑
i=0

ωi,t. (3)

After subtracting the unconditional mean µỹ from ỹt, we can separate the information accu-

mulation
∑t−1

i=0 ωi,t in the above equation into two sections,

ỹt − µỹ =

t−1∑
i=H

ωi,t +

H−1∑
i=0

ωi,t, (4)

where the first term on the right-hand side of the equation includes unanticipated information

that occur from the first observation up to the time when the longest horizon forecast is made

at the H period before the target time t, and the second term includes information occurring

subsequently until the realization of the target.

Our aim is to characterize a sequence of multi-horizon forecasts
(
ŷt|t−H , ŷt|t−H+1, ..., ŷt|t−1

)′
for the same target ỹt with a model that specifies one or more sources of forecast error. We

decompose forecasts ŷt|t−h as

ŷt|t−h = ỹt + βh + νt|t−h + ζt|t−h, (5)

or a “demeaned” version for multi-horizon forecasts is

ŷt|t−h − µỹ = ỹt − µỹ + βh + νt|t−h + ζt|t−h, (6)
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where ỹt − µỹ is defined in equation (4).

Equation (5) or (6) indicates that the forecasting errors ỹt−ŷt|t−h nest three types of error:

horizon specific bias, −βh; accumulated unanticipated shocks during the forecast horizon after

the forecasts are made, −νt|t−h; and the error component unrelated to the target, −ζt|t−h.

We discuss each type of error in the following subsections.

2.2 Rational forecast errors

The rational expectations hypothesis of Muth (1961) suggests that rational forecasters form

their expectations by effectively using all of the available information; hence, the only source

of error is unanticipated information received after the forecasts are made. At an h horizon

prior to the target time t, a rational forecaster with no access to unanticipated information

that occurs over the forecast horizon will produce a rational forecast:

ŷt|t−h = ỹt −
h−1∑
i=0

ωi,t = ỹt + νt|t−h. (7)

The rational forecast error is the accumulation of ωi,t over the horizon, that is, −νt|t−h.

We now analyze the properties of the rational forecast error. As defined in Section 2.1,

the effect of each unanticipated shock ωi,t = σωiηωi,t, where ηωi,t ∼ i.i.d.N(0, 1) and σω,i ≥ 0.

In the case of σωi = 0, there is no unanticipated shock occurring at horizon i prior to the

target time t. The rational forecast error νt|t−h has zero expectation and possesses a number

of distinct properties. First, equation (3) indicates that rational forecast error is correlated

with the target value, i.e., cov(ỹt, νt|t−h) 6= 0. Second, the unanticipated shocks that occur

after the forecasts are made are future information yet to be incorporated into the rational

forecasts (as seen in equation (7), in which the future information is deducted from the target

value); therefore, cov(ŷt|t−h, νt|t−h) = 0. Moreover, the variance of the rational forecast error,

computed as E(ν2t|t−h) =
∑h−1

i=0 σ
2
ωi,t , is non-decreasing as the forecast horizon h increases.
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This last property is intuitively appealing, as we expect there to be less relevant information

available to forecasters at longer horizons. A decline in relevant information will cause an

increase in forecast uncertainty and an associated increase in the variation of rational forecast

errors. Finally, on the basis of the first two properties, the variance of the target is no less

than the variance of the rational forecast.

2.3 Implicit forecast error

Forecasts may deviate from rational forecasts. Mills (1957) introduces the concept of “im-

plicit” expectation to describe the motivation of firms to hold inventories that deviate from

rational expectations of demand. This hypothesis was empirically tested by Lovell (1986). In

the scenario where rational forecasts of future demand are declining, a firm may still face a

relatively high demand forecast and hold inventories in order to reduce fluctuations in produc-

tion. Such forecast errors are formed due to consideration of the high costs associated with

rapid changes in production. They are uncorrelated with the actual demand but correlated

with the demand forecasts (as they are introduced by forecasters). This covariance property

of implicit forecast error is opposite from that possessed by rational forecast error.

Considering implicit forecast error as noise introduced into forecasts, the level of noise

may be different across forecast horizons. It is modeled by

ζt|t−h = σζhηζh,t, (8)

where ηζh,t ∼ i.i.d. N(0, 1). The following covariance assumptions enable us to differentiate

them from the rational forecast error: 1) Cov(ŷt|t−h, ζt|t−h) 6= 0 and 2) cov(ỹt, ζt|t−h) = 0. If

multi-horizon forecasts are only subject to implicit forecast error, the variance of the target

must be less than the variance of the implicit forecasts. In contrast to the monotonic pattern

of rational forecast error, the variance of implicit forecast error, E(ζ2t|t−h) = σ2ζh , may either
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increase or decrease as the forecast horizon shortens.

Forecasters may introduce implicit error into their forecasts unintentionally. For instance,

information used by forecasters may contain measurement errors unrelated to the target,

preventing forecasters from using the information efficiently (Lovell, 1986). As pointed out by

Isiklar & Lahiri (2007), the measurement error may be driven by noises in the data generating

process, delays in data releases and data revisions.

2.4 Bias

Both rational and implicit forecast errors have zero expectations; however, a large body of

research has empirically found non-zero bias in a wide range of forecasts, such as financial

analysts’ earning forecasts, gross debt forecasts and inflation forecasts. It is now well accepted

that forecasts can remain rational in the presence of bias if the forecasters’ loss function is

asymmetric (see Christoffersen & Diebold (1997), Lim (2001) and Patton & Timmermann

(2007)).

Therefore, we allow for a non-zero systematic bias as the third type of forecast error. We

assume that the bias βh is time-invariant but horizon specific1 so that empirically, bias can

easily be distinguished from rational and implicit forecast errors.

3 A state space representation of multi-horizon forecasts

3.1 A general structure

In this section, we cast the unobserved component model for multi-horizon forecasts that

contain multiple sources of error in a state space form. The time-invariant state space model

1Note that, although the forecasters’ learning process may indicate time-varying bias, in this paper, we
restrict the bias to being constant to avoid any potential identification issues. The time-invariant feature of
bias is also consistent with Davies & Lahiri (1995).
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consists of a set of measurement equations and a set of transition equations, that is,

yt = Zαt (9)

αt = Tαt−1 +Rηt. (10)

The specifications in equation (9) and (10) build on the multifarious errors model in the

form of equation (6) and the definitions and covariance properties of different types of errors

discussed in Section 2. Considering a case in which the observed value of the target is the

same as the target value, i.e., yt = ỹt, we have equal unconditional means of the observed and

the target value, i.e., µy = µỹ.

We first estimate µỹ by calculating the sample mean of the observed value of the target

event and denote it with µ̂y. Subtracting µ̂y from the multi-horizon forecasts and the observed

targeted values, we have the measurement vector, yt = [ŷt|t−H − µ̂y, ŷt|t−(H−1) − µ̂y, . . . , yt −

µ̂y]
′
.2 In our most general model that specifies all three types of forecast errors, the state

vector is partitioned as follows

αt =

[
ỹ∗t βh

′ ν ′t|t−h ζ′t|t−h

]′
, (11)

where ỹ∗t denotes the demeaned values of the target variable, and αt has length (1+H+H+H).

2Alternatively, one can establish the measurement equation based on equation (5) without the need to
subtract µy from the forecasts and the observed targeted values. In this case, the right-hand side of the state
equation for ỹt has an intercept µỹ that requires estimation. The GAUSS software allows for direct estimation
of the intercept in state equations, but we use the Econometrics Toolbox from MATLAB to build and estimate
the state space model, which strictly follows the form of equation (10). Although we could nominate µỹ
as one of the unobserved state variables, its time-invariant property is then identical to βh, resulting in an
identification problem in the state space model estimation.
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The associated measurement equation is

yt =

[
Z1 Z2 Z3 Z4

]


ỹ∗t

βh

νt|t−h

ζt|t−h


, (12)

where Z = [Z1 Z2 Z3 Z4] is a partitioned matrix conforming to the unobserved compo-

nents of the state vector; Z1 = 1(H+1) (which is an (H + 1)× 1 vector of ones) is related to

the target variable component; and Z2, Z3 and Z4 are each [IH ,0
′
1×H ]′ (an H ×H identity

matrix atop a conformably defined vector of zeros) and are related to the bias component, the

rational error component and the implicit error component, respectively. This measurement

equation reflects the forecast decomposition of equation (6) and also equates the (demeaned)

observed value of the target variable yt with the (demeaned) “true” unobserved target value

ỹt.

Transition equations describe the dynamics of the unobserved components in terms of the

state vector



ỹ∗t

βh

νt|t−h

ζt|t−h


=



T1 0 0 0

0 T 2 0 0

0 0 T 3 0

0 0 0 T 4





ỹ∗t−1

βh

νt−1|t−1−h

ζt−1|t−1−h



+



R1 0 R3 0

0 R2 0 0

0 0 −U · diag(R3) 0

0 0 0 diag(R4)





ηξ,t

ηβh,t

ηωh,t

ηζh,t


, (13)
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where U is an H ×H matrix with zeros below the main diagonal and each of the remaining

elements equal to one, and [ηξ,t,η
′
βh,t

,η′ωh,t,η
′
ζh,t

]′ ∼ i.i.d.N(0, I). Looking at the partitions

of the transition coefficient T , T1 is a scalar; and T 2, T 3 and T 4 are all H×H. 0 is an H×H

null matrix. The partitions of the loading coefficients R have similar dimensions to those in

T , and R3 and R4 are all 1×H.

3.2 Specifications for the target variable

To discuss the block for the target ỹt, we start from equation (4) in section 2.2,

ỹ∗t =
t−1∑
i=H

ωi,t +
H−1∑
i=0

ωi,t.

All of the unanticipated new information ωi,t in the second summation of the above equation

occurs after the longest horizon forecasts are made and can be identified by the observed set

of multi-horizon forecasts. However, the information included in the first summation occurs

during the period spanning from the time when the longest horizon forecast was made all the

way back to the first time point, that is, ωi,t for i = H,H + 1, ..., t − 1. This information

is a part of the rational forecasts at every given forecast horizon and cannot be separately

identified from the summation. Therefore, we let
∑t−1

i=H ωi,t = σξηξ,t where ηξ,t ∼ i.i.d.N(0, 1).

The block for the demeaned target variable in equation (13) is hence given as

ỹ∗t =

[
σξ σωH−1 σωH−2 . . . σω1 σω0

] ηξ,t

ηωh,t

 . (14)

Specifically, the transition coefficients T1 = 0, the loading coefficients R1 = σξ and R3 is a

1×H vector of [σωH−1 , σωH−2 , . . . , σω1 , σω0 ].
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3.3 Specifications for forecasting errors

We now explain the blocks for the unobserved forecast errors. Since the bias is a horizon-

specific constant that does not vary over time, we set T 2 as an H×H identity matrix. On the

basis of the discussion in section 2.2, at each horizon νt|t−h = −
∑h−1

i=0 ωi,t = −
∑h−1

i=0 σωiηωi,t;

therefore, we let T 3 be an H × H null matrix and R3 = [σωH−1 , σωH−2 , . . . , σω1 , σω0 ]. The

rational forecast error component is then given by

νt|t−h = −U · diag(R3) · ηωh,t =



−σωH−1 −σωH−2 . . . −σω1 −σω0

0 −σωH−2 . . . −σω1 −σω0

...
. . .

. . . −σω1 −σω0

0 . . . . . . 0 −σω0





ηωH−1,t

ηωH−2,t

...

ηω1,t

ηω0,t


. (15)

Jacobs & Van Norden (2011) use this restricted specification of the loading matrix to model

the rational data revision process.

The implicit forecast error is horizon specific and uncorrelated across horizons. Thus,

the matrix T 4 is a null matrix, and the dynamics of the implicit component are completely

described by diag(R4), whereR4 is a row vector of standard deviations of the implicit forecast

error, i.e., [σζH , σζH−1
, ..., σζ1 ]. The equation below describes the process of implicit forecast

error:

ζt|t−h = diag(R4) · ηζ,t =



σζH 0 . . . 0

0 σζH−1

. . .
...

...
. . .

. . . 0

0 . . . 0 σζ1





ηζH ,t

ηζH−1,t

...

ηζ1,t


. (16)

The most general model represented by equations (12) and (13) nests several simpler
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forecast error structures. For example, by removing the blocks for bias βh, we model multi-

horizon forecasts to contain only rational and implicit errors. The transition equation is


ỹt

νt|t−h

ζt|t−h

 =


T1 0 0

0 T 3 0

0 0 T 4




ỹt−1

νt−1|t−1−h

ζt−1|t−1−h

+


R1 R3 0

0 −U · diag(R3) 0

0 0 diag(R4)




ηξ,t

ηωh,t

ηζh,t

. (17)

A state space form for multi-horizon forecasts subject purely to rational forecast error can

then be obtained by further restricting Z4 and R4 to be null matrices, and the transition

equation is,

 ỹt

νt|t−h

 =

T1 0

0 T 3


 ỹt−1

νt−1|t−1−h

+

R1 R3

0 −U · diag(R3)


 ηξ,t

ηωh,t

. (18)

Alternatively, in the absence of unanticipated new information over the forecast horizon,

revised multi-horizon forecasts only consist of forecast error uncorrelated with the target. In

this case, we set Z3 to be a null matrix, and let R3 be a 1×H vector of zeros. The transition

equation for modeling the pure implicit forecasts is then given by

 ỹt

ζt|t−h

 =

T1 0

0 T 4


 ỹt−1

ζt−1|t−1−h

+

R1 0

0 diag(R4)


 ηξ,t
ηζh,t

. (19)
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3.4 Estimation and analysis of the forecast revision structure

We check the various state space representations of multi-horizon forecasts against the suffi-

cient conditions of controllability and observability provided by Harvey (1989) and Jacobs &

van Norden (2007). The parameters in the models discussed in the previous subsection are

identified.

The maximum likelihood estimator with the Kalman filter is used to estimate the un-

observed component models. Since the specifications of the multi-horizon error structure

are nested, model selection methods, such as log likelihood ratio tests and the conventional

information criteria, can be implemented to determine the best fitted error structure.

The estimation of multifarious error models helps to provide insight into the sources of

forecast revisions across horizons. Suppose that the multi-horizon forecasts consist of all

three types of forecast errors and are modeled by equations (12) and (13). The differences

between ŷt|t−(h−1) and ŷt|t−h, namely, the marginal revisions made between two updating

points t− (h− 1) and t− h, are derived as follows,

dt|h−1,h = ŷt−(h−1) − ŷt|t−h

= βh−1 − βh + σωh−1
ηωh−1,t + ζt|t−(h−1) − ζt|t−h.

(20)

Therefore, the mean squared forecast revisions (MSFR) can be decomposed as

MSFRt|h−1,h = E(d2t|h−1,h)

= (βh−1 − βh)2 + σ2ωh−1
+ σ2ζh−1

+ σ2ζh .

(21)

Equation (21) indicates that marginal revisions are made to correct bias (first term), to
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adopt newly available information (second term) and to adjust for implicit errors that are

uncorrelated with the target (the last two terms).

4 Simulation

In this section, we undertake a simulation exercise to evaluate the performance of the proposed

modeling approach for identifying forecast error compositions across horizons. We let the

observed target variable yt follow a simple AR(1) process

yt = µy + φ(yt−1 − µy) + εt, (22)

and εt ∼ i.i.d.N(0, σ2ε ), where σε = (1 − φ2)1/2σy. Calibrating the parameters to be close

to the data of the daily maximum temperature in Melbourne, Australia, we set µy = 21,

φ = 0.75 and σy = 6. The standard deviation of εt is hence σε = 3.97.

We generate forecasts made at four horizons h = 4, 3, 2, and 1 to contain two types of

forecast errors: rational and implicit errors. To do so, we first calculate rational forecasts

E(yt|t−h) using equation (22) and then add implicit errors to the rational forecast at each

horizon. The standard deviations of marginal information adoption by rational forecast at

each horizon can be derived from iterating yt in equation (22) as

yt = µy + φh(yt−h − µy) + φh−1εt−(h−1) + φh−2εt−(h−2) + ...+ φεt−1 + εt. (23)

The information relevant to yt that is unavailable at horizon h but becomes observed at

horizon h−1 is φh−1εt−(h−1); hence, for h = 4, 3, 2 and 1, the standard deviations of marginal

information adoption, σωh−1
, are σω3 = 0.753 × 3.97 = 1.67, σω2 = 0.752 × 3.97 = 2.23,

σω1 = 0.75× 3.97 = 2.98, and σω0 = 3.97.

We consider two sets of values for the standard deviations of implicit error. First, we let
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σζh = h−1
3 σy for h = 4, 3, 2 and 1. In this case, the magnitude of implicit error at the longest

horizon h = 4 is as great as σy, and as the forecast horizon shrinks, implicit error declines.

In the second data generating process, we consider a smaller value of σζh = 3 for all four

horizons. We use a sample size of 300 observations and perform 1000 simulations.

In each of the simulations, we estimate three models: the most general three-error com-

ponent model; the rational plus implicit error component model; and the rational error com-

ponent model. Table 1, Figure 1 and Figure 2 report the simulation results of the estimated

parameters in the rational plus implicit error component model, which is the correct model

used in the data generating process. As indicated in Table 1, both the Akaike Information

Criterion (AIC) and Baysian Information Criterion (BIC) choose the correct error structure

with a successful rate of 99.7% for the first DGP and 98.3% for the second DGP. The average

values of estimated parameters across 1000 simulations (which are reported in the second row

of each panel in Table 1) are close to their true values (which are reported in the first row of

each panel in Table 1).

[Insert Table 1]

Figures 1 and 2 provide the histograms of the simulation results for the first and the

second DGP, respectively. In general, we observe bell-shaped distributions, and the estimated

parameters are centered around their true values. In Figure 1, when there is no implicit error

at the shortest horizon h = 1, the largest mass of σ̂ζ1 occurs at the true value of 0.

[Insert Figure 1]

[Insert Figure 2]

The simulation results suggest that this unobserved component modeling approach is able

to identify the correct error structure and to provide reliable estimates for the magnitude of

the information adoption and implicit forecast error across forecast horizons.
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5 Evaluating Multi-horizon Weather Forecasts

In this section, we evaluate multi-horizon forecasts of the daily maximum temperature (degrees

Celsius) for Melbourne, Australia to demonstrate how our model-based evaluation approach

extracts the various types of forecast errors and forecast revision components and to suggest

how these results could assist decision makers in planning.

Over the past few decades, meteorological services in Australia have produced increasingly

accurate weather forecasts at ever-increasing forecast horizons (see Stern (2008) and Stern &

Davidson (2015)). For decision makers who rely on weather conditions, the technological

improvement of weather forecasts provides an opportunity to choose between using long-

horizon weather forecasts and using short-horizon weather forecasts. We aim to provide insight

into the revision process for daily maximum temperature forecasts over 14-day horizons so

that decision makers can optimally time their planning decisions conditional on the weather

forecast revision process.

5.1 Data

We retrieve the data from http://www.weather-climate.com, which consist of an experi-

mental daily maximum temperature forecast series generated at multiple 14-day horizons and

an observed maximum daily temperature series for Melbourne, Australia. The sample period

runs from February 1, 2009 to December 31, 2014, comprising a total of 2159 days, with

forecasts available at 14, 13,..., 2, and 1 day out from each observation date.

These experimental daily maximum temperature forecasts were produced in real-time us-

ing a forecast combination algorithm, as documented in Stern (2007) and Stern & Davidson

(2015). A number of data sources are used to produce the combined forecasts, including

the official forecasts from the Australian Bureau of Meteorology (BOM), the previous day’s
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maximum temperature forecasts, statistical forecasts3, and climatological forecasts4. Table

2 describes the forecast combination weightings used to generate the daily maximum tem-

perature forecasts. The combination weights vary depending on the length of the forecast

horizon. For example, BOM does not publish forecasts of maximum temperature for more

than 7 days out from the target date; hence heavier weights are imposed on the statistical

and climatological forecasts that are based on long-run and large-scale weather forecasts.

[Insert Table 2]

Figure 3 plots the daily maximum temperature observations (light colored dotted line)

and the corresponding meteorological forecasts generated 7 days (gray solid line) and 14

days (black solid line) out from the target observation date, spanning the full sample. This

figure presents three main features. First, the observed maximum temperature series is more

volatile than both forecast series, and the forecasts made 7 days before the target are more

volatile than the forecasts made 14 days before the target. These observations meet Patton &

Timmermann (2012)’s necessary conditions for rational forecasts, that is, the variance of short-

horizon forecasts is no less than the variance of long-horizon forecasts and is bounded by the

variance of the realization. Second, there is a permanent increase in the variations of the two

forecast series beginning from mid-2012. Stern & Davidson (2015) discuss an improvement in

forecast skill beginning from mid-2012, which they attribute to a major upgrade of the NWP

models on May 22, 2012. In addition, the observed temperature series and the two forecast

temperature series exhibit more variability on warmer days than on cooler days. Stern &

Davidson (2015) note that the competing influence of warm dry winds from the Australian

interior and cool moist winds from the Southern Ocean render temperature forecasting for

3Stern and Davidson (2015) provide a brief explanation of the statistical forecasts. These forecasts are com-
puted for local weather based on the output of the long-range numerical weather prediction (NWP) models pro-
vided by the National Center for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric
Administration (NOAA). See Wilks (2011) for examples of statistical forecast methods for meteorological
variables.

4Climatological forecasts are the averages of historical observations over many years.
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Melbourne particularly challenging, and this influence is strongest during the warmer months.

[Insert Figure 3]

We report both full-sample and sub-sample means and the standard deviations of the

maximum daily temperature observations and all fourteen horizon forecasts in Table 35. The

statistics confirm our observations regarding Figure 3.

[Insert Table 3]

5.2 Results

5.2.1 Forecast decomposition

We focus on three model specifications: the rational model that specifies unanticipated new

information over the forecast horizon as the only source of forecast error; the rational plus

implicit model that allows for some forecast errors to be unrelated to the target; and the

bias+rational+implicit model that adds a horizon-specific but time-invariant systematic bias6.

Table 4 reports the estimation results of the three alternative models. The top panel

presents the estimated values of σωh−1
, which represents the marginal increase in information

content owing to forecast revisions made at the shorter horizon h − 1 when compared to

the forecast of horizon h. The estimated standard deviations of the implicit errors at each

horizon h, denoted by σζh , are reported in the middle panel. These values capture the size

of the noise uncorrelated with the targeted maximum daily temperature. The bottom panel

shows the Kalman smoothed estimates of the horizon-specific forecast bias. We also report

the log likelihood values, and the Akaike and Bayesian Information Criteria for each model.

5For the Southern hemisphere, we denote the period from September 21 to March 20 as warm days and
the period from March 21 to September 20 as cool days.

6The estimation results of other alternative models, including the pure implicit model, the bias plus rational
model, and the bias plus implicit model, can be provided upon request. The log likelihood values suggest
that these three models are less preferred to the rational model, the rational plus implicit model and the
bias+rational+implicit model reported here.
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[Insert Table 4]

Since the rational model is nested by both multiple-error models, we can apply either log

likelihood ratio tests or information criteria to identify the empirically preferred model(s).

Both approaches reach the conclusion that multi-horizon forecasts of the maximum daily

temperature for Melbourne up to 14 days out are subject to multiple types of forecast errors.

Between the two multiple-error models, which have different state variables but the same

number of unknown parameters, we can simply compare the maximum values of log likelihood.

Since the rational and implicit model achieves a higher log likelihood value than that of the

model with systematic bias, we prefer this bi-error structure and continue our further analysis

based on the estimates of the rational plus implicit model 7.

The estimated value of σωh−1
starts relatively low at 0.637◦C in the revised forecast at the

horizon of 13 days and then remains at a similar level until 9 days before the target date. It

then increases in the subsequent revisions and peaks at the value of 1.560◦C at the forecast

horizon of 6 days. Subsequently, as the horizon shrinks further, the estimated σωh−1
declines,

suggesting decreasing marginal information content adoption within 5 days before the target

day.

The estimated standard deviation of the implicit forecast error σζh exhibits a different

pattern. It is highest at the longest forecast horizon and gradually declines as the forecast

time approaches 7 days before the target day. Revisions of the maximum temperature forecasts

within a week of the target day lead to trivial implicit errors.

We use Figure 4 to depict the dynamics of the forecast revision structure across forecast

horizons. With a modification of equation (21) for the rational plus implicit forecasts by

7Note that, for the bias+rational+implicit model, the estimated biases over all 14 horizons are significantly
negative, but the estimates related to the rational revision and implicit forecast errors are virtually the same
as those from the rational plus implicit model, except for the implicit forecast errors within 7 days before
the target day. In both models, the estimated magnitudes of the implicit forecast errors within 7 days are
significantly lower than those of the rational forecast errors. Therefore, our subsequent analysis, specifically
the change in marginal information content in the revisions over forecast horizons, is not much affected by our
modeling choice.
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removing the bias term, we can decompose the value of MSFRt|h−1,h into σ2ωh−1
plus σ2ζh and

σ2ζh−1
. Figure 4 shows how the sizes of these components for the revised daily maximum

temperature forecasts evolve from 13 days to 1 day before the realization. The total length of

each bar represents the size of MSFRt|h−1,h. Within each bar, the black color represents the

variation of newly adopted information in the updated forecast made at horizon h − 1, and

the dark gray and light gray colors represent the variations of irrelevant implicit error made

at horizons h− 1 and h, respectively.

[Insert Figure 4]

In general, the MSFR between two adjacent horizons decreases as the forecast day ap-

proaches the target day. Furthermore, the proportional contribution of each source of forecast

revision varies over horizons. For example, at horizons longer than 8 days before the target

date, adjusting for irrelevant noise accounts for most of the MSFR values. When the forecast

day is within a week of the target day, more than 90% of the MSFR values are accounted

for by the incorporation of newly available information. This alteration of the main source of

forecast revisions can be explained by how the multi-horizon maximum temperature forecasts

for each horizon are constructed. The weighting structure reported in Table 2 shows that, at

horizons longer than 7 days out, forecasts are a combination of statistical and climatological

forecasts derived from long-term and large-scale mathematical models. The large amount of

variation in the combination forecasts that is irrelevant to the target reflects the inaccuracy of

these sourcing forecasts for local maximum daily temperature when made more than 7 days

out from the target day. For horizons within a week of the target, BOM’s official forecasts

contribute 50% of the combination forecasts. That information adoption becomes the sole

source of short-term forecast revisions indicates BOM’s very high short-term prediction skill

for maximum daily temperature.

An understanding of the forecast revision structure across horizons can potentially help
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decision makers to choose an optimal horizon forecast for their planning decisions. As analyzed

above, the daily maximum temperature forecast revisions made in the second week before the

target day are associated with minimal information content and hence are less likely to result

in significant economic benefits for the forecast users. If early planning is preferred, they may

be better off using 12-day-out revised forecasts rather than 9-day-out revised forecasts. By

waiting a few days longer and bearing the opportunity costs of delayed planning, decision

makers are provided with revised weather forecasts that incorporate a substantially larger

amount of information. Since the information content reaches its highest level in the 6-day-

out revised forecasts and then decreases as the forecast horizon shrinks, the value added using

6-day-out forecasts may be greater than that using forecasts at horizons shorter than 6 days.

5.3 Subsample evaluations

5.3.1 Effects of the NWP upgrade

The difference in forecast variabilities before and after May 22, 2012, is evident in Figure

3. On May 22, 2012, the NCEP’s operational system, including the long-range numerical

weather prediction models that serve as an input for the maximum temperature forecasts,

were upgraded. In this section, we examine the effect of the upgrade on the multi-horizon

forecast and revision structure.

We estimate the rational and implicit model using the subsample of pre-May 22, 2012,

and the subsample starting on May 22, 2012. We then calculate the estimated MSFRt|h−1,h

and its components in the two subsamples over the forecast horizons and present the results

in Figure 5. The top panel is for the first subsample before the NWP model upgrade, and the

bottom panel is for the second subsample after the upgrade.

[Insert Figure 5]

The sizes of MSFRt|h−1,h at horizons longer than 7 days after the NWP model upgrade are
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approximately four times greater than those prior to the upgrade. However, the upgrade does

not have much impact on the MSFRt|h−1,h at short horizons within 5 days before the target

day is reached. The increase in MSFRt|h−1,h for long horizons is associated with higher σ2ωh−1

and higher σ2ζh and σ2ζh−1
, suggesting that, following the NWP model upgrades, the forecast

revisions contain more relevant information but also more irrelevant noise. The upgrade does

not affect the composition of the forecast revisions across horizons, and information adoption

becomes the dominant source of revisions for forecasts made within 7 days of the target.

More interestingly, this NWP model upgrade advances the arrival of maximum informa-

tion content. Before the upgrade, the MSFRt|h−1,h peaks at 6 days out, when new informa-

tion adoption between two adjacent updating points is also the greatest. After the upgrade,

the highest marginal information adoption occurs one day earlier, at 7 days out, and the

MSFRt|h−1,h again exhibits a declining pattern as forecasts are made at horizons closer to

the target. The NWP model upgrade provides users of maximum daily temperature fore-

casts with an optimal forecast horizon one day earlier than the optimal horizon prior to the

upgrade. Given the same amount of information adoption in forecast revisions, since both op-

timal horizon forecasts contain a similar amount of newly available information, incorporating

longer-horizon forecasts in planning may result in higher profits.

5.3.2 Effects of seasons

The geographical location of Melbourne leads to wide variation in the maximum temperature

during warm months, making it difficult to forecast. In this section, we study whether the

composition of forecast revisions across horizons is consistent over seasons. We estimate a

rational and implicit model allowing for different σωh−1
and σζh between warm months and

cool months. Figure 6 illustrates the values and the compositions of MSFRt|h−1,h over the

forecast horizons, with the top panel for the warm months and the bottom panel for the cool

months.
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[Insert Figure 6]

The MSFRt|h−1,h values across all horizons in warm months are much higher than those

in cool months, consistent with the fact that the forecast volatilities at all horizons are higher

in warmer months. In general, the values of MSFRt|h−1,h decrease as the forecast horizon

shrinks regardless of the season, except that the marginal forecast revisions made at 6 days

out provides high MSFRt|h−1,h.

The shares of the sources for forecast revisions are consistent between seasons. Regardless

of whether the target days are in the warm or cool season, the long-horizon forecast revisions

(made in the second week before the target date) are mainly due to adjustment of implicit

forecast errors that are irrelevant to the target, suggesting inefficiencies in the long-horizon

maximum temperature forecasts. Starting from 7-day-out forecasts, newly available infor-

mation becomes the dominant attribute of the revisions, and these short-horizon maximum

temperature forecasts are effective rational forecasts. Finally, the forecast horizon at which

the maximum amount of marginal information arrives is the same between warm and cold

months for the target.

6 Conclusion

The availability of multi-horizon forecasts of the same target offers forecast users an oppor-

tunity to investigate the revision structure across forecast horizons. This paper proposes a

state space modeling approach that decomposes multi-horizon forecast errors into several un-

observed components, including 1) rational forecast errors that occur due to unanticipated

information related to the target; 2) implicit sources of forecast errors that are irrelevant to

the target; and 3) horizon-specific bias that captures systematic under- or over-forecasts. By

using this modeling approach, forecast users can explore the best fitted forecast error structure

for the whole set of multi-horizon forecasts and study the key attributes of forecast revisions at

25



each horizon. Understanding the dynamics of forecast revision structure across horizons may

help forecast users to identify the most desirable horizon forecast for their planning decisions.

Simulations demonstrate that the unobserved component modeling approach is powerful

for identifying the correct forecast error structure via the use of the standard information cri-

teria for comparing alternative error decompositions. The estimated parameters that indicate

the magnitude of different sources of forecast revisions at each horizon are well behaved.

In our application, we use the proposed modeling approach to evaluate maximum daily

temperature forecasts for Melbourne, Australia. Using the forecasts up to 14 days before the

target, which range from February 1, 2009 to December 31, 2014, we find that these multi-

horizon weather forecasts contain both rational forecast error and implicit forecast error. The

variance of each type of forecast error changes along the forecast horizon, with the short-

horizon revised forecasts (made up to 7 days before the target) containing more information

and less irrelevant noise than the long-horizon forecasts (made in the second week before the

target).

An important application of our modeling approach is to analyze the sources of forecast

revisions and how the composition of these sources changes along the forecast horizon. By de-

composing the value of the mean squared temperature forecast revisions between two adjacent

updating points into a rational component due to adopting newly available information and

an implicit component due to adjusting irrelevant noise, we show that marginal information

adoption accounts for a similarly small proportion of forecast revisions made from 13 days to

9 days before the target. Information adoption becomes (effectively) the single attribute of

the forecast revisions as the forecast horizon shrinks to within 7 days.

Our unobserved component modeling approach provides a means to select the best decision-

making point. Early planning is beneficial but generally suffers from little relevant information

being incorporated into revised forecasts made at long horizons. Our results of the forecast

revision structure of the maximum daily temperature show that the forecast horizon of 6
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days, when the highest amount of information is found in the revisions (using the full-sample

period), could be the ideal horizon for decision making. We also find that the upgrade of the

NWP models moves the occurrence of the highest marginal information adoption to the 7-day

horizon and hence shifts the best decision-making time one day earlier. This improvement

shows the value of investment to upgrade weather prediction systems since early planning of

economic activities related to future weather conditions, including crop irrigation and har-

vesting and energy supply, results in potential profits for the decision makers.
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Table 1: Simulation results of estimating the rational and implicit error component model
over 1000 replications

σω3 σω2 σω1 σω0 σζ4 σζ3 σζ2 σζ1 AIC BIC

DGP 1 1.67 2.23 2.98 3.97 6 4 2 0
Est. Para. 1.56 2.15 2.88 3.92 6.02 5.00 4.01 0.44 99.7% 99.7%

DGP 2 1.67 2.23 2.98 3.97 3 3 3 3
Est. Para. 1.58 2.15 2.93 3.95 3.04 3.02 3.01 3.01 98.3% 98.3%

Notes: This table reports the averages of estimated parameters in the rational plus implicit error model over
1000 simulations. In both top and bottom panels, the first row lists the true values of the parameters used for
generating rational plus implicit forecasts (that contain both rational and implicit errors) at four horizons,
and the second row lists the averages of their estimated values over 1000 replications. The last two columns
show the frequencies of which AIC and BIC choose the correct forecast error structure out of the alternative
models. The other candidate models include the most general model that contains all three types of forecast
errors and the pure rational error model. The sample size is 300.

Table 2: Forecast combination weightings for the multi-horizon daily maximum temperature
forecasts in Melbourne, Australia

Horizon h Official Previous Statistical Climatology

1 to 7 days 0.50 0.25 0.25
8 to 13 days 0.25 0.50 0.25
14 days 0.50 0.50

Notes: This table lists the weightings of the multi-horizon real-time forecasts of the daily maximum
temperature of Melbourne. The weightings are provided by Stern & Davidson (2015), which explains that the
forecast combination is based on official forecasts from the Australian Bureau of Meteorology, previous day’s
forecasts, statistical forecasts, and climatological forecasts.
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Table 3: Descriptive statistics of daily maximum temperature observations and
multi-horizon forecasts for Melbourne, Australia

Full sample Pre-NWP upgrade Post-NWP upgrade Warm months Cool months

Horizon h Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
14 20.53 4.64 20.79 4.51 20.19 4.79 24.07 3.11 17.13 3.06
13 20.57 4.72 20.79 4.50 20.30 4.98 24.14 3.29 17.17 3.08
12 20.60 4.79 20.78 4.52 20.37 5.10 24.21 3.37 17.15 3.09
11 20.61 4.82 20.78 4.53 20.40 5.17 24.24 3.42 17.14 3.12
10 20.62 4.84 20.81 4.54 20.38 5.18 24.27 3.41 17.13 3.10
9 20.60 4.79 20.83 4.55 20.31 5.07 24.20 3.40 17.15 3.09
8 20.62 4.77 20.82 4.54 20.36 5.05 24.18 3.40 17.21 3.13
7 20.74 4.95 20.82 4.59 20.65 5.37 24.31 3.78 17.33 3.23
6 20.88 5.30 21.04 5.06 20.68 5.58 24.53 4.40 17.39 3.38
5 20.93 5.45 21.11 5.24 20.70 5.69 24.57 4.71 17.45 3.47
4 20.96 5.56 21.12 5.37 20.75 5.78 24.62 4.90 17.46 3.52
3 20.97 5.62 21.11 5.44 20.79 5.85 24.62 5.04 17.48 3.56
2 20.98 5.70 21.10 5.54 20.84 5.89 24.66 5.16 17.48 3.59
1 20.99 5.76 21.13 5.62 20.81 5.93 24.67 5.28 17.47 3.60
0 21.11 6.01 21.24 5.89 20.94 6.15 24.71 5.73 17.66 3.86

Notes: This table reports the means and standard deviations of daily maximum temperature observations
and their multi-horizon forecasts for Melbourne, Australia. The full sample covers 2159 target days from
February 1, 2009 to December 31, 2014. The pre-NWP upgrade period spans February 1, 2009 to May 21,
2012 before the Numerical Weather Prediction models experienced a major upgrade on May 22, 2012. The
post-NWP update period is from May 22, 2012 to December 31, 2014. For the southern hemisphere, we
denote the days from September 21 to March 20 as warm months, and the cool months cover March 21 to
September 20. The horizon h indicates the number of days before the target day that the forecasts are made.
The last row, h = 0, represents the observed daily maximum temperature.
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Table 4: Estimation results of the multi-horizon forecasts of daily maximum temperatures
for Melbourne, Australia, between February 1, 2009 and December 31, 2014

Alternative models
Bias

Rational +Rational
Rational + Implicit + Implicit

Forecast Errors Estimate Std err Estimate Std err Estimate Std err

Rational revision σω13 1.568 (0.037) 0.637 (0.125) 0.667 (0.125)
σω12 1.654 (0.040) 0.858 (0.055) 0.857 (0.055)
σω11 1.564 (0.039) 0.657 (0.062) 0.657 (0.062)
σω10 1.534 (0.039) 0.662 (0.057) 0.662 (0.053)
σω9 1.472 (0.037) 0.682 (0.053) 0.682 (0.053)
σω8 1.421 (0.037) 0.992 (0.044) 0.991 (0.044)
σω7 1.416 (0.036) 1.311 (0.037) 1.304 (0.037)
σω6 1.560 (0.037) 1.560 (0.037) 1.554 (0.035)
σω5 1.095 (0.036) 1.095 (0.036) 1.094 (0.035)
σω4 0.973 (0.023) 0.973 (0.024) 0.973 (0.024)
σω3 0.820 (0.022) 0.820 (0.022) 0.820 (0.022)
σω2 0.728 (0.020) 0.728 (0.020) 0.727 (0.020)
σω1 0.697 (0.019) 0.697 (0.019) 0.697 (0.019)
σω0 1.690 (0.032) 1.691 (0.032) 1.687 (0.032)

Implicit error σζ14 0.994 (0.078) 0.973 (0.085)
σζ13 1.036 (0.038) 1.037 (0.038)
σζ12 1.038 (0.037) 1.038 (0.037)
σζ11 1.025 (0.036) 1.025 (0.036)
σζ10 1.010 (0.036) 1.010 (0.036)
σζ9 0.874 (0.037) 0.874 (0.037)
σζ8 0.534 (0.059) 0.536 (0.058)
σζ7 0.005 (0.002) 0.028 (0.012)
σζ6 0.003 (0.001) 0.017 (0.006)
σζ5 0.002 (0.001) 0.014 (0.003)
σζ4 0.003 (0.001) 0.015 (0.005)
σζ3 0.002 (0.001) 0.010 (0.003)
σζ2 0.002 (0.001) 0.010 (0.002)
σζ1 0.003 (0.001) 0.017 (0.005)

Bias β14 -0.581 (0.066)
(smoothed states) β13 -0.531 (0.066)

β12 -0.506 (0.066)
β11 -0.494 (0.065)
β10 -0.487 (0.064)
β9 -0.509 (0.063)
β8 -0.489 (0.060)
β7 -0.361 (0.056)
β6 -0.226 (0.050)
β5 -0.176 (0.046)
β4 -0.148 (0.043)
β3 -0.138 (0.040)
β2 -0.121 (0.037)
β1 -0.118 (0.035)

Log likelihood -55,914 -54,933 -55,052
Akaike Info Criterion 111,857 109,923 110,162
Baysian Info Criterion 111,942 110,088 110,326

Notes: The sample covers 2159 target days from February 1, 2009 to December 31, 2014. For the daily
maximum temperature of each target date, meteorological forecasts are made at a daily frequency at horizons
of 14 days to 1 day before the target date. The standard errors of the estimates are in parentheses.
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Figure 3: Daily maximum temperature observations and multi-horizon forecasts for
Melbourne, Australia from February 1, 2009 to December 31, 2014
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Figure 4: Estimated MSFRt|h−1,h and the components for multi-horizon daily maximum
temperature forecasts for Melbourne, Australia, from February 1, 2009 to December 31, 2014
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(a) Before the NWP model was upgraded on May 22, 2012
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(b) After the NWP model was upgraded on May 22, 2012
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Figure 5: Comparison of estimated MSFRt|h−1,h and the components between the pre-NWP
model upgrade and the post NWP model upgrade periods
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(a) In warm months from Sept 21 to Mar 20
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(b) In cool months from Mar 21 to Sept 20
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Figure 6: Comparison of estimated MSFRt|h−1,h and the components between warm and
cool months
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