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Abstract

The use of intradaily data to produce daily variance measures has resulted in increased
forecast accuracy and better hedging for many markets. However, this paper shows that
improved hedging ratios can depend on the behavior of price disruptions in the assets.
When spot and future prices for the same asset do not jump simultaneously inferior
hedging outcomes can be observed. This problem dominates potential bias from thin
trading. Using US Treasury data we demonstrate how the extent of non-synchronized
jumping leads to the finding that optimal hedging ratios are not improved with intradaily
data in this market.
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1. Introduction

A simple and widely used approach to reducing or eliminating exposure to price risk

involves hedging spot positions with futures contracts. In a perfect hedge the profits and

loss will offset exactly and the portfolio pays the riskless rate of return in equilibrium.

The ratio of the number of units of the futures contracts held to relative to a unit of the

spot contract is known as the hedge ratio. The optimal hedge ratio is that ratio which

yields minimum variance of the hedge portfolio.

Initial empirical research into hedge ratios considered the time invariant case as in

Ederington (1979). This was followed by hedge ratios explicitly recognizing the time

varying joint distribution of cash and futures contracts; Kroner and Sultan (1993), and the

application of GARCH techniques to capture time varying covariance such as Cechetti,

Cumby and Figlewski (1988), Baillie and Myers (1991), Strong and Dickinson (1994),

Park and Switzer (1995) and Brooks, Henry and Persand (2002) inter alia. However,

Carnero, Peña and Ruiz (2004) argue that GARCH models fail to adequately capture

the behaviors of squared returns, particularly the excess kurtosis and persistence typically

observed in daily or even weekly data.

Recent focus has shifted to the potential of volatility measures constructed from in-

tradaily data, specifically realized volatility, which has been shown to provide improved

forecasts of future volatility in some instances.1 The realized volatility approach dispenses

with the need for an explicit model of the latent volatility process and instead provides

a direct and consistent estimator of volatility. Lai and Sheu (2010) argue that realized

measures of volatility based on intradaily data provide more accurate measures of the

covariance matrix and hence produce better risk minimizing hedges than can be obtained

using daily data, and find that this leads to improved hedging outcomes with S&P500

data.
1Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys (2003), Barndorff-Nielsen

and Shephard (2004), inter alia, use intradaily data to construct realized measures of volatility. Blair,
Poon and Taylor (2001) and Andersen, Bollerslev, Christofferson and Diebold (2006), inter alia, investi-
gate the use of realized volatility as a source of forecasts for future volatility.
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This study examines hedging price risk associated with the US Treasury bond market.

In contrast with Lai and Sheu (2010), the use of intradaily data yields inferior dynamic

hedges than obtained with daily data. Two reasons may account for this finding. First is

the presence and particular behavior of price discontinuities, or jumps, in the two price

series. While two series may both jump within a certain day (known as cojumping) this

may occur either at identical times, described as joint jumps, or at different time intervals

within a day, that is disjointly. We hypothesize that disjoint jumps weaken the hedging

strategies based on the realized measures of variance and covariance. The second reason

is thin or asynchronous trade, so that finer intraday sampling increases the chance of no

trading during that interval.

Jumps are known to be present in both US Treasury spot and futures data, see for

example Johannes (2004), Andersen, Bollerslev and Diebold (2007), Dungey, McKenzie

and Smith (2009), Jiang and Yan (2009), Jiang, Lo and Verdelhan (2010), while Piazzesi

(2003) demonstrates improvements in yield curve modelling through accounting for po-

tential jumps. Recently, Dungey and Hvozdyk (2012) have shown that while spot and

futures prices in US Treasuries may jump contemporaneously, known as joint jumps,

there is also a significant number of incidences when jumps in the two prices occur at

statistically distinct times within a single day - these are known as disjoint jumps and

occur in about 20% of jump cases. Although the US Treasury market is characterized as

a liquid one (Fleming, 2003; Mizrach and Neely, 2007; Balduzzi, Elton and Green, 2001

inter alia), it is important to consider the impact of thin trading in the current study.

Firstly, liquidity of the US Treasuries is subject to diurnality implying less liquid intervals

within a day. Secondly, the results can be useful for cross-hedging applications, when, for

instance, a less liquid corporate bond is hedged by a liquid US Treasury futures contract.

We untangle the impact of jumps and thin trading on estimated hedge ratios via a

Monte Carlo experiment. The presence of thin trading creates some bias in the hedge

ratio. However, this is dwarfed by the bias induced by the presence of disjoint jumps.

Joint jumps have relatively little impact, but the occurrence of disjoint jumps creates a
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significant bias in the estimated hedge ratio, of up to 50% in some experiments. The

results suggest that the potential for improved hedging using intradaily data depends

critically on the extent of jump activity, and specifically disjoint jump activity; aspects

which can be clearly identified using statistical tests proposed by Aït-Sahalia and Jacod

(2009), Jacod and Todorov (2009) and Todorov and Tauchen (2011).

There has been a considerable attention in the literature focused on obtaining long-

term hedges: Butterworth and Holmes (2001) on daily and weekly hedges, Bystrom

(2003) on weekly hedges, Cechetti et al. (1988) on monthly hedges, and Dark (2007) on

multiple period hedges. This paper follows the more recent literature on testing whether

high frequency data can lead to improvements in hedging outcomes for the US Treasury

markets as established by Harris, Shen and Stoja (2011) on hedging foreign exchange

rate exposures using intradaily data and McMillan and Garcia (2010) on hedging equity

risks. Both these papers use one-day-ahead hedging to test their hypotheses.

The results of this paper demonstrate that high frequency intradaily data will not

always result in improved outcomes over daily data in producing daily measures of im-

portant financial management tools. The paper employs two major types of hedging

ratios: the ratios based on daily data and the realized hedge ratios derived from the in-

tradaily data. The former includes a naive (or co-integrated) hedge which takes one short

futures contract for every spot unit, an OLS based hedge which employs an estimated

time-invariant hedging coeffi cient from the OLS regression, and a GARCH based hedge

which employs time-varying hedge ratios estimated using a bivariate GARCHmodel. The

latter part employs intradaily data to estimate daily measures of the realized hedging ra-

tios. Throughout the paper returns sampled at three sampling frequencies: 5, 30, and 60

minute intervals.

Although Lai and Sheu (2010) show improvements in hedging with intraday equity

data this turns out not to be the case for the US Treasury market. Given the importance

of the US Treasury market in international portfolio management this is a striking result.

The result derives from the recently documented extent of non-synchronized jumping in
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the spot and futures markets for this asset. Although the number of papers characterizing

the extent of joint and disjoint jumping in different assets is as yet relatively small, the US

Treasury markets do seem to exhibit a greater degree of jumping than other markets, see

for example Andersen et al. (2007), and all types of jumps in this market are commonly

associated with macroeconomic news; see Dungey and Hvozdyk (2012), Evans (2011),

Dungey et al. (2009), Jiang et al. (2010), and de Goeij and Marquering (2006) on the

effect of macroeconomic news announcements on volatility of the US Treasury bonds. The

disproportionate occurrence of disjoint jumps on news days means that hedging ratios

constructed from intradaily data are most vulnerable on days when arguably they are

most desired.

The paper is structured as follows. Section 2 presents the theoretical framework for

deriving the hedge ratios using data at a daily frequency before moving to the construction

of hedge portfolios using intradaily data. Section 3 describes the US Treasury data, and

the hedging outcomes generated using daily and intradaily data. Section 4 presents Monte

Carlo evidence on the role of jump activity and thin trading in producing these results,

robustness checks, and the practical implications. Finally, Section 5 concludes.

2. Optimal hedging: An empirical analysis

Let ps,t and pf,t denote the price of the spot and futures contract, respectively at the end

of day t. Similarly, let rs,t and rf,t denote the corresponding continuously compounded

returns over day t−1 to t. The daily return to an unhedged position in the spot contract

is therefore rs,t. A hedge portfolio is constructed by simultaneously taking offsetting

positions in the cash and futures markets. Denote the expected return to the hedge

portfolio over the period t− 1 to t as Et−1 (rp,t):

Et−1 (rp,t) = Et−1 (rs,t)− βt−1Et−1 (rf,t) . (1)
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Note that βt−1 represents the hedge ratio determined at time t − 1, for employment in

period t.2 The conditional variance of the hedge portfolio, σ2p,t is

σ2p,t = σ2s,t + β2t−1σ
2
f,t − 2βt−1σsf,t, (2)

where σ2s,t and σ
2
f,t are the conditional variances of the cash and futures contracts, respec-

tively, and σsf,t represents the corresponding conditional covariance. The optimal hedge

ratio, β∗t−1, for a risk averse utility maximizing agent with mean-variance preferences is

the value of βt−1 which minimizes σ
2
p,t given as

β∗t−1 =
σsf,t
σ2f,t

, (3)

where β∗t−1 is unobserved and must be estimated appropriately.

2.1. Hedging using intradaily data

Andersen, Bollerslev, Diebold and Wu (2005) introduce the notion of the realized mea-

sure of undiversifiable risk for a sample of equity returns. This paper builds upon their

approach to obtain a realized hedge ratio. Let the vector price process pt = (ps,t, pf,t)

follow a bivariate continuous-time stochastic volatility diffusion,

dpt = µtdt+ ΩtdWt, (4)

where the standard 2-dimensional Brownian motion is denoted asWt; the positive definite

symmetric diffusion matrix, Ωt, and the 2-dimensional instantaneous drift, µt, are strictly

stationary and are jointly independent ofWt. The covariance matrix contains the security

variances σ2s,t = Ω(1,1)t and σ2f,t = Ω(2,2)t and the covariance σsf,t = Ω(1,2)t = Ω(2,1)t. The

vector of continuously compounded returns is given by

rt+jδ,δ = pt+jδ,δ − pt+(j−1)δ,δ, (5)

2At this stage we do not require that βt−1 be time varying, but rather, require that it is determined
using information available up to the end of period t− 1.
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where 1/δ is the number of sampling intervals in the day (δ = 1 implies sampling at the

daily frequency). Conditioning on the realized sample paths of µt and Ωt, it is possible

to write the distribution of this return vector as

rt+δ,δ|σ
{
µt+τ ,Ωt+τ

}1/δ
τ=o

˜N

(∫ 1

0

µt+τdτ ,

∫ 1

0

Ωt+τdτ

)
, (6)

where the σ-field generated by the sample paths of µt and Ωt is written as σ
{
µt+τ ,Ωt+τ

}
,

for 0 ≤ τ ≤ 1. It follows that a natural measure of the true latent daily volatility is

provided by the integrated diffusion matrix
∫ 1
0

Ωt+τdτ . Under weak regularity conditions,

Andersen et al. (2005) show that

1/δ∑
j=1

rt+jδ,δr
′
t+jδ,δ −

∫ 1

0

Ωt+τdτ −→ 0 (7)

almost surely for all t as the return sampling frequency increases, δ −→ 0. In order to

construct the realized hedge ratio it is necessary to obtain the appropriate elements of

the realized diffusion matrix, namely the realized variance of the futures contract

RVf,t+1 =

1/δ∑
j=1

r2f,t+jδ,δ, (8)

and the realized covariance

RVsf,t+1 =

1/δ∑
j=1

rf,t+jδ,δrs,t+jδ,δ. (9)

The realized hedge ratio is the ratio of (9) to (8), and it follows from the theory of

quadratic variation, under fairly weak regularity conditions, that

β̂R,t+1,δ =
RVsf,t
RVf,t

−→ β∗t+1 ≡
∫ 1
0

Ω(1,2)t∫ 1
0

Ω(2,2)t

, (10)

almost surely for all t as the return sampling frequency increases, δ −→ 0, ensuring that

the realized hedge ratio is consistent for the corresponding integrated hedge ratio.

3. Hedging outcomes for US Treasuries

3.1. Data

Data on the 5 year maturity US Treasury bond spot transactions are obtained fromCantor

Fitzgerald with corresponding futures markets observations from the Chicago Mercantile
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Exchange. The raw data comprise tick-by-tick transaction prices for the period 2 January

2002 to 29 December 2006. We focus on the pre-crisis data in order to avoid potential

effects of the financial turmoil on the hedging outcomes. After excluding weekends and

public holidays the sample includes 701 trading days.3 The closing price is selected as

that closest to 5:00 PM EST each day, and daily returns calculated according to (5) with

δ = 1, and appropriately scaled to yield daily percentage returns. Summary statistics for

the daily returns data are presented in Panel A of Table 1. As is usual with asset returns

the raw return data are approximately mean zero and displays evidence of non-normality

and heteroskedasticity. A test for up to 5th order ARCH is strongly significant for both

rs,t and rf,t.

3.2. Daily measures of the hedge ratio

Table 1 Panel A reports the unhedged variance of the spot contracts in the first col-

umn, with the first row giving the in-sample variance for the first 500 observations, and

the second the variance where the final 201 observations which are used as an out-of-

sample case. The remaining columns report the portfolio return variance under alter-

native hedging strategies. The second column refers to the naive strategy of offsetting

every cash contract with a futures contract, which assumes both constant conditional

variance-covariance matrix of returns, and that σsf = σ2f holds. In this case there is a

39.42% reduction in in-sample variance over the no-hedging outcome of column 1, and in

the out-of-sample case, there is a 38.11% reduction in variance.

In more sophisticated hedging strategies the time series behavior of Σt, the condi-

tional variance-covariance matrix of returns, will determine the appropriate approach to

estimating β∗t−1. Consider the constant variance-covariance matrix Σ:

Σ =

[
σ2s σsf
σsf σ2f

]
. (11)

In this case, the optimal hedge ratio will also be constant (see Ederington, 1979 inter alia)

3We define the trading day as starting at 7:30 AM and finishing at 5:00 PM (EST) time. The days
that are contaminated by outliers are excluded from the sample.
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and its best estimate may be obtained as the OLS slope coeffi cient from the regression

rs,t = µ+ β̂rf,t + ut. (12)

OLS estimates of the optimal hedge ratio are reported in column 3 of Panel A in Table 1,

headed OLS Hedge. Using the initial 500 observations of rs,t and rf,t the OLS hedge ratio

β̂ is calculated and is used to calculate rp,t using (1) and hence V ar(rp,t). In comparison

to the unhedged case, β = 0, the OLS approach yields an in-sample gain to hedging of

40.54%. To construct the out-of-sample OLS hedge ratio estimates the sample window

is extended to encompass the remaining 201 observations; the corresponding rp,t and

its variance are calculated for each of the 201 days. The results are displayed in the

out-of-sample outcomes for the β̂ estimates in column 4 of Panel A in Table 1. In this

out-of-sample case, the improvement from hedging is 37.82% over the unhedged case.

However, it is unlikely that the conditional variance-covariance matrix is actually

constant, in which case the optimal hedge ratio will display time variation and is unlikely

to be unity at any time t. Abstracting from rebalancing cost of the hedge portfolio, a

constant hedge ratio would yield inferior hedging outcomes when there is time variation

in the elements of Σt. Let σ̂
2
s,t and σ̂

2
f,t and σ̂sf,t represent the elements of the estimated

conditional covariance matrix, Σ̂t, where

Σ̂t =

[
σ̂2s,t σ̂sf,t
σ̂sf,t σ̂2f,t

]
. (13)

The optimal hedge ratio may be estimated as

β̂t−1 = σ̂sf,t/σ̂
2
f,t. (14)

GARCH models may be used to obtain the elements of the estimated conditional co-

variance matrix and hence β̂G,t−1. Defining rt = (rs,t, rf,t)
′ and ut = (us,t, uf,t)

′, we employ

quasi-maximum likelihood techniques to estimate the following system of equations:

rt = Φ0 +
∑2

k=1 Φkrt−k + ut
Σt = C∗′0 C

∗
0 + A∗′11ut−1u

′
t−1A

∗
11 +B∗′11Σt−1B

∗
11

, (15)

where Φ0 is a 2 × 1 matrix of intercepts, C∗0 is a 2 × 2 coeffi cient matrix, which is

restricted to be upper triangular to ensure that (15) is identified, and Φk, A
∗
11, B

∗
11 are
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2 × 2 coeffi cient matrices. This parameterization of the bivariate GARCH system, due

to Engle and Kroner (1995), ensures that Σt is positive-definite for all values of ut in the

system. The time varying hedge ratio may be obtained from Σ̂t using (14) and used to

construct the hedge portfolio return rp,t.

The column headed GARCH Hedge in panel A of Table 1 reports the portfolio

variance for the in-sample and out-of-sample cases where the GARCH specification of

(15) is applied to the initial 500 observations for in-sample and one-step ahead estimators

used to calculate the 201 out-of-sample days and the associated rp,t and the associated

variance. The in-sample variance is reduced by 36.52% over the no-hedging case while

the out-of-sample variance is reduced by 39.10%.4

It is clear from Table 1 that any hedge leads to a reduction in the exposure to risk

within sample, that is, V ar(rp,t) < V ar(rs,t) for all portfolios considered. Both the

out-of-sample and in-sample results suggest that employing the naive, OLS or GARCH

approaches to hedging actually yield substantial reductions in volatility. However, the

evidence in Table 1 suggests that there is little to choose between the naive, OLS and

GARCH approaches. This is somewhat at odds with the general consensus in the recent

literature for other assets that the use of multivariate GARCH models yields superior

minimum variance hedges than the fixed-sample or rolling-sample OLS approach, see

Cecchetti et al. (1988), Baillie and Myers (1991) and Brooks et al. (2002) inter alia.

3.3. Intradaily data

We construct equally spaced prices for the spot and futures contracts by setting the

price in the jth interval of day t to be equal to the last trading price recorded in that

interval. Continuously compounded returns for each interval are calculated as shown

in (5). For ease of interpretation the difference of the log transaction price is scaled to

yield percentage returns for each sampling frequency δ. For instance, with the 5 minute

sampling frequency the 9.5 hour trading day is partitioned into 114 intervals so that

4In unreported work, the BEKK was augmented to include realized measures of variance and covari-
ance. However, no appreciable improvement in the quality of hedge was obtained. These results are
available from the authors upon request.
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δ = 1/114. There is no uniform agreement over the choice of sampling frequency in the

high-frequency data. A number of sampling frequencies have been chosen in the empirical

papers; for example, Lahaye et al. (2011) choose 15 minute intervals, while Huang and

Tauchen (2005) and Andersen et al. (2007) sample their data at the 5 minute intervals.

Ongoing research addresses the optimal univariate sampling case, such as Bandi and

Russell (2006) but the problem is more diffi cult for multiple series with possibly different

trading intensities. We construct three discrete and equally spaced intradaily sampling

frequencies, namely 5, 30 and 60 minute intervals, and calculate the realized variance

and realized covariance and hence realized hedge ratio for each frequency. We may then

construct hedges for the following day using

rp,t = rs,t − β̂R,t−1,δrf,t (16)

for alternative sampling frequencies, obtaining various hedge portfolio returns and corre-

sponding variance estimates.

The intradaily in-sample and out-of-sample variances are reported in panel B of Table

1 for each frequency. The three columns report the cases using 5 minute sampling, 30

minute sampling and 60 minute sampling. In both the in-sample and out-of-sample

cases the hedges based on 30 minute sampling frequency produce the largest reduction

in exposure compared with the unhedged benchmark. The largest effects are available in

the in-sample cases, where the reduction in variance is uniformly over 36% and is largest

for the 30 minute sampling frequency which achieves a 40.13% reduction in exposure.

The largest out-of-sample gain is 21.04% in the 30 minute case again, and the in-sample

performance at the 5 and 60 minute sampling frequencies are close, with a reduction risk

of 16.72% and 17.78%.

Comparing panels A and B of Table 1 makes it clear that the intradaily hedging

outcomes using daily and intradaily data are close when considering the in-sample per-

formance. When examining the evidence of the out-of-sample case, the results are domi-

nated by the daily naive, OLS and GARCH approaches to hedging. This is at odds with

recent evidence of the effectiveness of hedging strategies which employ intradaily data to
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hedge foreign exchange rate exposures, Harris et al. (2010), or equity risks, Lai and Sheu

(2010). The remainder of this paper seeks to explain the relatively poor performance of

the hedges based on β̂R,t−1,δ.

3.4. Intradaily measures of the hedge ratio

Table 2 presents summary statistics for the various realized hedge ratios, β̂R,t−1,δ for 5,

30 and 60 minute sampling frequencies, and for the GARCH hedge ratio β̂G,t using the

in-sample data. The average of the β̂R,t−1,δ appears to increase with sampling frequency,

δ. The average value of β̂G,t is less than that of β̂R,t−1,δ for the 30 and 60 minute sampling

frequencies. The variance of β̂R,t−1,δ appears to peak at the 30 minute sampling frequency

and then decline. In every case the variance of the hedge ratio obtained using the GARCH

approach exceeds that of the realized beta.

All approaches to obtaining the hedge ratio appear to be non-normal in distribution.

For the hedge ratios constructed with intradaily data, the skewness becomes increas-

ingly negative at the 30 minute intervals. Moreover, the distribution of β̂R,t−1,δ appears

platykurtic. In contrast, the GARCH hedge ratio although negatively skewed displays a

large degree of excess kurtosis.

Figure 1. displays the estimated unconditional distributions of β̂R,t−1,δ for the vari-

ous sampling frequencies. All the distributions have a pronounced mode in the interval

[0.5, 1.5]. For the 5 minute sampling frequency the mode is in the interval [0.5, 1.0], while

for the 30 and 60 minute sampling frequencies the mode is closer to unity.

Recall that the realized beta is defined as β̂R,t−1,δ = RVsf,t−1/RVf,t−1. Three particular

circumstances may lead to a downward bias in β̂R,t−1,δ from its true value for day t. In the

first case, rs,t,δ = 0, leading to a downward bias in RVsf,t−1 across the day. In the second

case, rf,t,δ = 0 and consequently both RVsf,t−1 and RVf,t−1 will be biased downwards. In

the third case both rs,t,δ = 0 and rf,t,δ = 0 and again both RVsf,t−1 and RVf,t−1 are biased.

Where any of these three scenarios occur in any interval within the day the realized beta

for that day will be biased downwards and the magnitude of the bias increases as the

number of intervals containing zero increases.
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This paper explores two possible candidate explanations for a large number of zero or

low outcomes for β̂R,t−1,δ. In the first case no trading occurs in the cash and/or futures

market in interval δ, and so rs,t,δ = 0 and/or rf,t,δ = 0. This corresponds to the Epps

(1979) effect where thin trading results in a downward bias to the hedge ratio. Closer

examination of Figure 1. suggests that the mode approaches 1 as the sampling frequency

declines, consistent with thin trading as the chance of a trade occurring within any

intradaily interval increases as the interval length increases. However, increasing the

interval length necessarily reduces the number of intradaily observations available.

In the second case while trade may or may not occur in a particular intradaily in-

terval, a jump occurs in the interval causing β̂R,t−1,δ to deviate from its true underlying

continuous value resulting from either a deviation of either the covariance, the realized

futures variance or both.

The jump behavior of US Treasuries has now been documented in a number of places.

Univariate jump tests such as those proposed by Barndorff-Nielsen and Shephard (2004)

and variations on Lee and Mykland (2008) are reported in Andersen et al. (2007), Dungey

et al. (2009), Jiang et al. (2010). An interesting feature of this market is the relatively

higher proportion of days exhibiting jump behavior than in the more frequently investi-

gated equity market data - see for example the comparison in Andersen et al. (2007).

This may be part of the explanation of why Lai and Sheu (2010) find improvements for

hedging outcomes using intradaily data for an equity index compared with the individual

maturity bonds investigated here. To illustrate the extent of jumps in the data, Table 3

reports the rejection frequency of the no jump hypothesis for univariate spot and futures

data for different maturities of bond using the Barndorff-Nielsen and Shephard (2004)

test (Columns 1 - 2). It is clear that futures prices jump more frequently than spot.

In the hedging application we are concerned with the impact of jumps in two assets,

futures and spot. Several scenarios may arise on any given day; where neither asset

jumps, where one asset jumps and the other does not, where both assets jump contem-

poraneously and where both assets jump in the day but at statistically distinct times.
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A recent test by Jacod and Todorov (2009) builds on the Barndorff-Nielsen and Shep-

hard (2004) univariate results to distinguish statistically contemporaneous jumps, known

as joint jumps, from those which are statistically separable in time, known as disjoint

jumps. Their proposal consists of two tests. The first, the joint jump test, uses the null of

no contemporaneous jump, and tests whether the ratio of realized variances constructed

using different sampling frequencies is the same, in which case the jumps occurred sta-

tistically simultaneously. The second test, the disjoint jumps test, operates under a null

that jumps observed in the same day are not contemporaneous, and tests whether the

ratio of the realized variance to the square of the product of the quadratic returns of the

individual assets is statistically different to zero. In the case that this ratio is zero, then

the asset returns do not move together.

Dungey and Hvozdyk (2012) apply this test to the US Treasury spot and futures. The

corresponding results for the data used in this paper are reported in Columns 3 - 4 of

Table 3 for 5 minute sampling, and clearly show that both joint and disjoint jumps are

common occurrences in the US Treasury data. There is very little comparative work on

these cojumping tests in the literature as yet, applications are limited to a December

1986 to June 1999 sample of DM/USD and JPY/USD data in Jacod and Todorov (2009)

and a comparison of price and volatility jumps in the S&P500 futures for January 1997 to

June 2007. Our sample reports higher incidence of both cojumping and disjoint jumping

than either of the exchange rate or equity data studies, although this must be regarded

as relatively early evidence given the disparity in sample periods and sampling frequency

of the different studies.

To investigate the relative effects of thin trading and jumps the next section employs

a Monte Carlo experiment which allows us to vary the degrees of thin trading and the

type, frequency and size of jumps and whether the jumps occur contemporaneously or in

a disjoint manner.
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4. The Monte Carlo experiment

4.1. Data generating process

TheMC experiment creates 1000 (days) realizations of the pairs of simulated return series.

We simulate 1 increment per 5 minutes for a trading day of 10 hours. The dynamics of the

price series pi, where i indexes the assets in the experiment, is a version of the stochastic

volatility jump diffusion processes of Andersen et al. (2007) and Veraart (2010):

dpi,t = exp(ζ0 + ζ ivi,t)dWi,t + αi
∫
R piλi(dt, dpi) + αsf

∫
R piλ3(dt, dpi)

dvi,t = αvvi,tdt+ dW vi
t , i = {s, f}, (17)

where ζ0 and ζ i govern the drift and trend component of the continuous price process,

Wt is a standard Brownian motion. The stochastic volatility component is vi,t with

magnitude determined by αv, while the correlation between the return of security i and

vi is governed by cor(Wi,W
vi) = ρi.

Equation (17) allows for jumps as sudden discontinuities in the continuous price

process. The parameters λ1, λ2 and λ3 are Poisson measures that govern the inten-

sity of the jumps, while the magnitudes of the jumps are determined by the loadings αs,

αf and αsf . Following Jacod and Todorov (2009) and Dungey and Hvozdyk (2012) a joint

jump occurs where αs = αf = 0 and αsf 6= 0, that is a jump occurs contemporaneously

within a day. A disjoint jump occurs where αs = αf 6= 0 and αsf = 0, in which case the

two series may jump at different time intervals within a day. In the absence of jumps,

αs = αf = αsf = 0, while when both types of jumps are present αs = αf = αsf 6= 0.

Thin trading occurs where there is a periodic lack of volume arriving to the market.

If the return ri is zero in an interval on day t due to thin trading, then the quotient

β̂R,t−1,δ = RVsf,t−1/RVf,t−1 will be biased downwards relative to the true value. In the

MC experiments to follow the degree of thin trading is determined by the parameter φ,

the proportion of intervals in a trading day which contain zero return. Given randomly

generated data and assuming that thin trading is uniformly distributed across the day,

it is possible to impose zero values on the proportion φ of the returns after the data is

generated. When φ = 0, there is an absence of thin trading, and the prevalence of thin
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trading increases with φ up to 20% of intradaily intervals (well beyond the less than 5% of

intervals with no trade in the 5 minute Treasury database). This will result in an excess

of zero return observations as the price in the market does not change as frequently as

would occur under more usual trading conditions. We also allow for the possibility that

thin trading occurs independently in the cash and futures markets.

The parameter values chosen follow Jacod and Todorov (2009) and set αv = 0.1,

ζ0 = 0, ζ i = 0.125, and in line with Veraart (2010) ρi = −0.62. These values are

fixed for all experiments. We draw the individual asset price data from the standard

normal distribution, implying that the true value of beta will be determined by the

correlation between the assets. This correlation is initially chosen to be 1.0 but is varied

for completeness to allow for the situations where no perfect hedge exists, such as the use

of a Treasury bond future to hedge the risk of a corporate bond position.

We consider four scenarios regarding jumps, namely no jumps, joint and disjoint

jumps, joint jumps only, and disjoint jumps only, with no thin trading effects. Further,

we consider the effect of varying the degree of thin trading from φ = 0 to φ = 0.2 in the

absence of jumps.5 Finally, by allowing for both thin trading and jumps we are able to

investigate the relative impact of each factor.

The simulated 10 hour trading day with 120 pseudo 5 minute intervals, yields 120,000

intradaily intervals which we allow to be randomly affected by 5,000 common jumps

and/or 5,000 disjoint jumps which are assumed to uniformly distributed across the whole

returns vector. Sub-sampling these pseudo 5 minute data appropriately yields 20 pseudo

30 minute and 10 pseudo 60 minute returns per day. We measure the sensitivity of

our results by varying both the magnitude of the jump components, the relative jump

intensities, the correlation across assets, and the sampling frequency. Two correlation

values are examined, the case where the true value of βR,t−1,δ is unity by construction as

var (rs) = var (rf ) = 1.0 and corr (rs, rf ) = 1.0 with results reported in Panels A - C of

Table 5, and the case where the true value of βR,t−1,δ = 0.5 in Panel D of Table 5.

5In our data there are up to 4% of intradaily intervals containing no trade records on average in the
5 year maturity at the 5-minute sampling frequency.
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4.2. Results

We first examine the results of thin trading when the jumps are present for different

sampling frequencies, reported in Panel A of Table 5.6 In the absence of thin trading,

the presence of jumps alone, without distinguishing between joint and disjoint jumps

(columns 1 - 3), leads to a downward bias in the estimate of βR,t−1,δ of 8.9%. At the

pseudo 5 minute sampling frequency the only impact of thin trading is a very marginal

increase in estimation uncertainty. At the lower sampling frequencies, both the estimate

of βR,t−1,δ and its standard deviation increase fractionally as the degree of thin trading

rises. Taken together, the results in columns 1 - 3 of Panel A in Table 5 demonstrate

that the estimate of βR,t−1,δ is biased downwards by approximately 8.7% − 8.9% by the

presence of jumps in the data irrespective of the sampling frequency or the degree of thin

trading.

To determine whether the type of jumps matters in determining this bias we proceed

to decompose the jump into joint and disjoint processes. Columns 4 - 6 of Panel A in Table

5 report the results where only joint jumps occur. Here the series jump simultaneously

and the magnitude of the jumps is scaled by αs = αf = 0.6. These joint jumps appear

to increase the correlation between rs,t and rf,t leading to very accurate estimates of

βR,t−1,δ and very little estimation uncertainty at the pseudo 5 minute frequency, with

thin trading having no discernible impact irrespective of the value of φ. At the lower

sampling frequencies the upward bias in the standard deviation of the realized hedge

ratio is increasing in φ.

The impact of disjoint jumps of a similar magnitude (governed by αsf = 0.6) are

reported in Columns 7 - 9 of Panel A in Table 5. Their effect on the mean and standard

deviation of the estimate of βR,t−1,δ is marked. The expected value of the realized hedge

ratio is biased downwards by approximately 30%, irrespective of the magnitude of φ. The

main impact of thin trading is to inflate the uncertainty of the estimate, with the size of

6Results for the case of no jumps are unbiased regardless of the degree of thin trading or sampling
frequency. For brevity they are not reported in the paper but are available from authors upon request.
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the bias being increasing in φ.

Panels B - D of Table 5 present sensitivity analysis to the original experiment reported

in Panel A of Table 5. The results reported in Panel B reduce the magnitude of the jumps

by 50%; that is αs = αf = αs,f = 0.3. Other than very marginal changes in magnitude the

outcomes are quantitatively and qualitatively robust to this change. Panel C represents

the case where the ratio of joint to disjoint jumps is increased to 10:1. Columns 4 - 9 of this

Panel demonstrate that having fewer disjoint jumps reduces bias to approximately 4.5%

and 15%, respectively (in contrast to 9% and 30% in the case when there are more disjoint

jumps, see Panel A). In Panel A the two series were perfectly correlated. Reducing the

correlation between the returns series to 0.5 and keeping both joint and disjoint jumps

leads to an upward bias in the estimate of βR,t−1,δ by up to 80% as reported in Columns 1

- 3 of Panel D of Table 5, and up to 96% when only joint jumps are present in Columns 4

- 6. The results in Columns 7 - 9 indicate that disjoint jumps alone create downward bias

in the estimates of βR,t−1,δ of about 20%− 30% , not dissimilar to the original results.

4.3. Robustness checks

We check sensitivity of the Monte Carlo outcomes and of the US Treasury data applica-

tion. In the former case, we employ a jump robust realized variance measure. The latter

case comprises two more additional checks of conditioning our sample on non-jump days,

and of employing the GARCH-RV approach implemented by Lai and Sheu (2010).

Among available alternatives of the jump-robust RV measures we choose a median RV

estimator by Andersen, Dobrev and Schaumburg, 2009 (ADS hereafter). It is shown to

be robust to jumps and market microstructure noise, In contrast to the realized bipower

variation of Barndorff-Nielsen and Shephard (2004) which does not allow for a feasible

asymptotic theory under the jump alternative, the ADS measure is robust to jumps

and microstructure noise. The ADS measure is also superior to higher power measures

which are sensitive to microstructure noise and near zero returns. The median or MedRV

estimator uses two-sided truncation by choosing the median of three adjucent absolute
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returns:

MedRV = ξ

(
1/δ

1/δ − 2

) 1/δ−1∑
j=2

med(|ri,t+jδ−1,δ|, |ri,t+jδ,δ|, |ri,t+jδ+1,δ|)2,

where ξ = π/(6− 4
√

3 + π) is the scaling factor.

Table 6 presents results of a Monte Carlo experiment for the case of perfect correlation

(Panel A), and the case of 50% correlation (Panel B). The data generating process is the

same as the one corresponding to Table 5, plus an additional jump-robust ADS technique

applied to the simulated series. In the case of perfect correlation, the downward bias is

still present when both types of jumps are present, the bias ranges between 7 - 19% for

the three sampling frequencies. In the case when only joint jumps are present, the bias

changes its sign, and becomes positive for the sampling frequencies of 30 minutes and

lower. One observes a deterioration of the results as the sampling frequency goes down

in the case of disjoint jumps. The main reason for such a deterioration is that MedRV

changes the positions of returns affecting their covariances.

When correlation between two simulated series is 50%, there is a significant improve-

ment in the results. Bias ranges between -7.8% and 14.8% when both types of jumps

are present, and between -8.0% and 33.2% when only joint jumps are present. This is a

significant reduction from the 80% bias demonstrated by Panel D of Table 5. However,

no significant improvement was demonstrated for the case of disjoint jump. This leads

to a conclusion that although a jump-robust technique may improve the hedging rations

when the data are contaminated by two types of jumps, it does not perform well when

disjoint jumps are dominant in the data.

In a further robustness check we condition our US Treasury data application on non-

jump days. We re-calculate the hedging outcomes of Section 3 for a sub-sample free from

the jump days as detected by the BNS jump test. Table 7 demonstrates that there is

an improvement in the performance of the hedged portfolio when the hedge ratios are

based on the intradaily data. Reduction in the in-sample variances vary between 34% -

38% for the realized hedge ratios, very close to the in-sample performance of the hedge
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ratios based on the daily data, 36% - 38%. In the out-of-sample case, however, hedging

outcomes based on daily data still outweigh the outcomes based on the intradaily data

implying that there is another potential cause of the bias.7

5. Conclusion

Unless the conditional variance-covariance matrix of spot and futures returns is time in-

variant, any optimal hedge ratio must display time variation. There is a deep literature

discussing estimation of time varying hedge ratios for dynamic hedges at the daily fre-

quency (see Ederington, 1979; Baillie and Myers, 1993; and Brooks, Henry and Persand,

2002 inter alia). Harris et al. (2010) employ intradaily data on foreign exchange con-

tracts, while Lai and Sheu (2010) use intradaily equity security data to obtain realized

measures of variance and covariance and hence to construct the realized hedge ratio.

Using these intradaily estimates Harris et al. (2010) and Lai and Sheu (2010) obtain

superior in-sample and out-of-sample hedges relative hedges based on daily measures.

In contrast, this paper finds that the outcomes of hedging US Treasury bond risk

using intradaily data yields inferior results relative to risk minimization strategies based

on daily data. It is well known that the US Treasury bond and futures contracts display

jump dynamics in the intradaily domain. Furthermore, there is the possibility that the

data displays thin trading where trading does not occur in every intradaily interval. If

either the cash or futures contract jumps or is thinly traded, we conjecture that the

realized hedge ratio will be biased towards zero.

A series of Monte Carlo experiments are employed to examine whether thin trading

and jumps actually lead to a biased estimate of the hedge ratio. We find that thin trading

alone leads to upward biases in the order of 2%. In the presence of jumps there is a bias

downwards of the hedge ratio of approximately 5%. Neither the coeffi cient bias nor the

associated measure of uncertainty are manifestly affected by increasing degrees of thin

trading. By distinguishing between joint and disjoint jumps we find that joint jumps have

7Another potential source of bias could be microstructure noise (see Christensen, Oomen and Podol-
skij, 2011).
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a minimal impact on the coeffi cient estimate and its associated standard deviation. In

contrast, disjoint jumps result in downward bias in the estimated hedge ratio of around

30%. This bias is unaffected by increasing the degree of thin trading. Thin trading does

however inflate the bias in the standard deviation of the hedge ratio. In the most severe

scenario where one interval in five contains no trade, the resulting bias in the realized

hedge ratio is swamped by the effect of the jumps we consider. This result is robust to

variations in the magnitude of the jumps. When correlation between two series decreases,

the upward bias of the joint jumps and the downward bias of the disjoint jumps are severe

and are approximately 96% and 20%-30%, respectively.

The implications of our results for agents hedging risk is clear. Where assets jump in

a random fashion some caution should be exercised in establishing hedge positions based

on intradaily data. The signal in the intradaily data appears to be heavily impacted by

price discontinuities or jumps, and most particularly this is the case when the jumps are

not exactly contemporaneous. Furthermore, while thin trading has some effects, these

must be considered as second order in comparison with the impact of jumps. In short,

while intradaily data presents an opportunity to establish estimates of the hedge ratio

based on the very large sample sizes, this opportunity is not costless. It may well be that

the hedges based on the smoother daily data outperform their intradaily counterparts.

This appears consistent with the evidence we obtain using our sample of US Treasury

bonds and futures.
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Unconditional Density of Realised Beta
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Fig. 1. Distribution of the realized hedge ratios, US Treasury bond and futures
markets.
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Table 1
Hedging outcomes: Empirical hedging exercise, US Treasury bonds and futures,
January 2002 —December 2006.

Panel A: Hedging outcomes: Daily data
No Hedge Naive Hedge OLS Hedge GARCH Hedge
(1) (2) (3) (4)

In-sample variance 0.311 0.189 0.185 0.198
% reduction - 39.42% 40.54% 36.52%
Out-sample variance 0.094 0.058 0.058 0.057
% reduction - 38.11% 37.82% 39.10%

Panel B: Hedging outcomes: Intradaily data
5 minute 30 minute 60 minute

In-sample variance 0.194 0.186 0.197
% reduction 37.60% 40.13% 36.72%
Out-sample variance 0.078 0.074 0.077
% reduction 16.72% 21.04% 17.78%

Table 2
Descriptive statistics for the time varying hedge ratios and daily returns, US Treasury
bonds and futures, January 2002 —December 2006.

Mean Var Skew Ex. Kurt
5 minute frequency 0.612 0.027 -0.870 3.078
30 minute frequency 0.891 0.045 -2.132 9.205
60 minute frequency 0.970 0.027 -0.524 1.752
GARCH 0.857 0.134 -3.895 28.279
rs 0.005 0.248 -0.537 20.089
rf 0.000 0.133 -1.360 10.268

Table 3
Univariate and bivariate jump tests for the US Treasury bonds and futures, January
2002 —December 2006.

Jumps in bonds Jumps in futures Joint jumps Disjoint jumps
(1) (2) (3) (4)

Proportion∗ 0.367 0.592 0.063 0.198

Note: 5 year maturity, sampled at the 5 minute intervals. ∗Relative to the total number of days.

Table 4
Parameter settings for the Monte Carlo simulations.

Parameter Value
ρ {1.00, 0.50}
α1,3 {0.60, 0.30, 0.00}
λ3 : λ1 {5 : 1, 10 : 1}
φ {0.00, 0.10, 0.20}
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Table 5
Mean and standard deviation of beta across sampling frequencies, 1000 replications over
1000 days.

Sampling
frequency 5 min 30 min 60 min 5 min 30 min 60 min 5 min 30 min 60 min

Joint and disjoint jumps∗ Joint jumps only∗∗ Disjoint jumps only∗∗∗

(1) (2) (3) (4) (5) (6) (7) (8) (9)
A. Ratio of joint to disjoint jumps is 5:1, correlation is 1.0

φ = 0.00
Beta 0.911 0.911 0.911 1.000 1.000 1.000 0.670 0.670 0.670
St dev 0.197 0.244 0.299 0.000 0.000 0.000 0.535 0.891 1.232

φ = 0.10
Beta 0.911 0.911 0.911 1.000 1.000 1.000 0.693 0.694 0.693
St dev 0.206 0.302 0.404 0.000 0.171 0.267 0.544 0.942 1.315

φ = 0.20
Beta 0.912 0.912 0.913 1.000 1.000 1.001 0.715 0.717 0.719
St dev 0.216 0.380 0.533 0.000 0.280 0.437 0.550 0.990 1.391

B. Jump size is reduced by 50%, correlation is 1.0
φ = 0.00

Beta 0.914 0.914 0.914 1.000 1.000 1.000 0.722 0.721 0.720
St dev 0.187 0.221 0.261 0.000 0.000 0.000 0.424 0.564 0.719

φ = 0.10
Beta 0.914 0.915 0.915 1.000 1.000 1.000 0.740 0.740 0.740
St dev 0.194 0.259 0.331 0.000 0.125 0.195 0.424 0.586 0.758

φ = 0.20
Beta 0.915 0.916 0.916 1.000 1.000 1.001 0.757 0.758 0.760
St dev 0.201 0.304 0.409 0.000 0.197 0.306 0.423 0.606 0.795

C. Ratio of joint to disjoint jump is 10:1, correlation is 1.0
φ = 0.00

Beta 0.953 0.953 0.954 1.000 1.000 1.000 0.818 0.817 0.816
St dev 0.148 0.183 0.224 0.000 0.000 0.000 0.435 0.706 0.971

φ = 0.10
Beta 0.953 0.953 0.954 1.000 1.000 1.000 0.832 0.832 0.834
St dev 0.155 0.257 0.352 0.000 0.170 0.265 0.435 0.738 1.025

φ = 0.20
Beta 0.954 0.954 0.954 1.000 1.000 1.001 0.846 0.848 0.851
St dev 0.162 0.342 0.494 0.000 0.281 0.437 0.436 0.774 1.084

D. Ratio of joint to disjoint jump is 5:1, correlation is 0.5
φ = 0.00

Beta 0.900 0.900 0.900 0.986 0.986 0.986 0.334 0.343 0.352
St dev 0.201 0.249 0.304 0.056 0.065 0.077 0.384 0.827 1.200

φ = 0.10
Beta 0.898 0.898 0.898 0.982 0.983 0.983 0.345 0.352 0.362
St dev 0.211 0.308 0.412 0.068 0.188 0.287 0.401 0.884 1.284

φ = 0.20
Beta 0.894 0.895 0.896 0.978 0.978 0.979 0.356 0.365 0.377
St dev 0.223 0.385 0.538 0.080 0.295 0.447 0.417 0.933 1.367

Note: φ is the asynchronicity parameter of futures. ∗Jump size parameters of equation (17) are
α1 = α2 = α3 = 0.6.

∗∗Jump size parameters of equation (17) are α3 = 0.6 and α1 = α2 = 0.
∗∗∗Jump

size parameters of equation (17) are α3 = 0 and α1 = α2 = 0.6. Panels A and B: 5000 joint jumps, 1000
disjoint jumps (500 disjoint jumps in futures, 500 disjoint jumps in spot).
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Table 6
Mean and standard deviation of beta across sampling frequencies, 1,000 simulation
days, using the ADS jump robust measure.

Sampling
frequency 5 min 30 min 60 min 5 min 30 min 60 min 5 min 30 min 60 min

A. Joint and disjoint jumps∗ B. Joint jumps only∗∗ C. Disjoint jumps only∗∗∗

Ratio of joint to disjoint jumps is 5:1, correlation is 1.0
φ = 0.00

Beta 0.931 0.849 0.836 0.947 1.002 0.943 0.679 0.270 0.160
St dev 0.277 0.471 0.505 0.598 2.025 3.693 0.373 0.325 0.268

φ = 0.10
Beta 0.909 0.825 0.824 0.942 1.019 0.924 0.709 0.302 0.183
St dev 0.413 0.593 0.824 0.594 2.125 3.914 0.354 0.341 0.290

φ = 0.20
Beta 0.869 0.825 0.811 0.932 1.040 1.074 0.730 0.368 0.245
St dev 0.378 0.740 1.066 0.617 2.284 3.894 0.323 0.373 0.342

Ratio of joint to disjoint jump is 5:1, correlation is 0.5
φ = 0.00

Beta 0.480 0.493 0.516 0.463 0.545 0.529 0.329 0.121 0.066
St dev 0.226 0.423 0.424 0.394 1.977 3.644 0.201 0.188 0.172

φ = 0.10
Beta 0.463 0.511 0.574 0.454 0.434 0.532 0.349 0.142 0.084
St dev 0.246 0.557 0.699 0.452 1.981 3.854 0.190 0.209 0.208

φ = 0.20
Beta 0.461 0.499 0.523 0.440 0.666 0.575 0.362 0.173 0.120
St dev 0.285 0.679 0.909 0.447 2.022 3.897 0.188 0.240 0.242

Table 7
Hedging outcomes: empirical hedging exercise, jump days are excluded from the sample.

Panel A: Hedging outcomes: Daily data
No Hedge Naive Hedge OLS Hedge GARCH Hedge

In-sample variance 0.342 0.220 0.212 0.214
% reduction - 35.62% 37.97% 37.59%
Out-sample variance 0.204 0.112 0.118 0.119
% reduction - 45.08% 41.86% 41.74%

Panel B: Hedging outcomes: Intradaily data
5 minute 30 minute 60 minute

In-sample variance 0.215 0.212 0.225
% reduction 37.18% 38.06% 34.29%
Out-sample variance 0.141 0.136 0.140
% reduction 30.89% 33.06% 31.50%
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