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Abstract

Trend GDP and output gaps play an important role in fiscal and monetary policy
formulation, often including the need for forecasts. In this paper we focus on fore-
casting trend GDP and output gaps with Beveridge-Nelson (1981) trend-cycle
decompositions and investigate how these are affected by assumptions concern-
ing correlated innovations and structural breaks. We evaluate expanding win-
dows, one-step-ahead forecasts indirectly for the G-7 countries on the basis of
real GDP growth rate forecasts. We find that correlated innovations affect real
GDP growth rate forecasts positively, while allowing for structural breaks works
for some countries but not for all. In the face of uncertainty the evidence supports
that in making forecasts of trends and output gap policy makers should focus on
allowing for the correlation of shocks as an order of priority higher than unknown
structural breaks.
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1 Introduction

Forecasts of output gaps play an important role in fiscal and monetary policy formula-

tion. A comprehensive review by Wieland and Wolters (2013) of forecasting for macroe-

conomic policy makers demonstrates both the practical importance of such forecasts—

feeding into decision making and fiscal planning for example—and the inherent risks

due to model uncertainty, model choices and the path dependency of the forecasts

on the policy decisions taken. Output gap forecasts, for example, are critical inputs

to policy maker discussions such as the future level of debt and sustainability of the

budget deficit as well as the Taylor rule.

This paper examines the relative importance of accounting for the impact of cor-

related trend and cycle innovations and structural breaks on forecasting trend output

and output gaps. While a range of methods exist to estimate trend output and output

gaps with historical data, see Kiley (2013), we focus on the unobserved components

model of Beveridge-Nelson (1981) trend-cycle decomposition. We apply the univariate

unobserved component model to forecast one-step ahead trends and output gaps for

the G-7 countries.

The implications of correlated innovations and structural breaks in forecasting trends

and output gaps have not been studied extensively before. The existing literature fo-

cuses on the measurement of real GDP trend and output gaps and emphasises the

impact of correlation between trend and cycle innovations and structural breaks. It

suggests that controlling for trend breaks is more important in the measurement of

output than allowing for the potential correlation of trend and cycle innovations. Per-

ron and Wada (2009) demonstrate this particularly with the strong finding that the

trend is deterministic and innovations to the trend and cycle effectively become uncor-

related after breaks are accommodated; see also the updated sample period in Luo and

Startz (2014) who find a weak correlation between trend and cycle shocks.
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We adopt a forecast user’s perspective and evaluate forecasts of unobserved com-

ponents indirectly on the basis of real GDP growth rate forecasts. We observe that

for many of the G-7 countries allowing for correlations between the innovations plays

a similar role as allowing for breaks in the drift of trend, that is to produce deeper

declines in trend forecasts during periods of stress than otherwise.

Importantly, we find that correlated innovations improve real GDP growth rate

forecasts across the G-7 countries, while allowing for structural breaks works for some

countries but not for all. We conclude that in the face of unknown structural breaks

it is more advisable for the forecasting policy maker to ensure they control for the

historically detectable correlation between innovations in cycle and trend, than to be

concerned about accommodating breaks.

The remainder of the paper is structured as follows. Section 2 discusses trend-cycle

decomposition, accounting for correlated innovations, detecting structural breaks and

forecast evaluation. Section 3 describes our data and the evidence for structural breaks.

Section 4 presents forecasts of real GDP, trends and output gaps, accounting for various

combinations of correlated and uncorrelated innovations and no structural break and

structural break specifications. Section 5 gives forecast evaluation outcomes. Section 6

concludes.

2 Methodology

2.1 Trend-cycle decomposition

We decompose seasonally-adjusted real GDP in natural logarithm (yt) into a trend (τt)

and an output gap or cycle (ct), that is

yt = τt + ct, (1)
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and the dynamics of the components τt and ct are modeled as

τt = µ+ τt−1 + uτ,t

φp(L)ct = uc,t.
(2)

In the above model the roots of the AR(p) polynomial φp(L) = 1−ρ1L−ρ2L2−...−ρpLp

are greater than one. The innovation vector vt = (uτ,t uc,t)
′ is i.i.d normally distributed

with E(vt) = 0 and covariance matrix

Q ≡

 σ2
τ στ,c

στ,c σ2
c

 . (3)

If we assume orthogonal innovations as in the seminal model of Watson (1986), then

στ,c = 0. Alternatively, we can assume non-zero correlations between trend and output

gap innovations, as in Morley, Nelson and Zivot (2003; henceforth MNZ).

This unobserved component model for real GDP yt has an associated ARIMA(p,1,q)

reduced form given by

φp(L)∆yt = µφp(L) + φp(L)uτ,t + θq(L)∆uc,t, (4)

where q = max(p, 1). For example, an ARIMA(2,1,2) reduced form associated to

p = 2 implies three non-zero autocovariances for exactly identifying στ , σc and στ,c

in Equation (3). When p = 1, the associated reduced form is ARIMA(1,1,1) and the

covariance matrix of (3) is under-identified. When p > 2, this covariance matrix is over-

identified. These identification conditions suggest that the estimation of the covariance

matrix of innovations in the transition equations requires p ≥ 2, see also MNZ, Proietti

(2006), Dungey et al. (2015) and Iwata and Li (2015).

In our empirical analyses we adopt an AR(2) process for the cycle process as in
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Clark (1987) and MNZ. This lag structure is widely used empirically and it is the most

parsimonious structure that satisfies the identification requirement.

In Equation (2) the trend of real GDP follows a process of a random walk with a

drift µ. Perron and Wada (2009) modify this equation by allowing the deterministic

part, µ, to change permanently after a structural break. We follow them, but allow

multiple structural breaks in the trend function, such that

τt = µTj−1+1:Tj + τt−1 + uτ,t, j = 1, 2, ...,m+ 1 and Tj−1 + 1 ≤ t ≤ Tj, (5)

where m denotes the total number of breaks, and T0 = 0 and Tm+1 = T .

Detecting unknown structural breaks in the UC framework is not trivial.1 However,

we can detect and date the breaks in the reduced form of Equation (4): a drift break

in trend function is equivalent to a mean shift of the GDP growth series. Therefore we

apply the Bai-Perron algorithm for detecting and dating break dates (Bai and Perron,

1998, 2003) to the mean of the growth rate of real GDP. Several studies have taken

this simple route to detect structural breaks in the drift of the unobserved trend, see

for example, Basistha and Nelson (2007) and Mitra and Sinclair (2012).

If a drift break is identified in the past sample up to time t, we modify the trend

process. Taking the conventional view that the observations after the last break pointDt

are the most relevant to forecasting the future2, we incorporate only the last estimated

break point T̂lb for the purpose of forecasting, that is

τt = µ+ β ×Dt + τt−1 + ντ,t, where Dt = 1 for t ≥ T̂lb and Dt = 0 for t < T̂lb. (6)

Note that when applying the Bai-Perron method for structural break testing, a small

1Luo and Startz (2014) undertake a Bayesian approach.
2For recent alternatives see e.g. Pesaran and Timmermann (2004); Eklund, Kapetanios and Price

(2013); Giraitis, Kapetanios and Price (2013) and Pesaran, Pick and Pranovich (2013).
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proportion of the observations at the beginning and the end of the sample needs to be

trimmed. This requirement limits the immediate detection of parameter shifts when

the shifts have just occurred. Therefore breaks will be identified with lags.

2.2 Forecast evaluation

We cast the model in state space form, and compute UC forecasts in line with Harvey

(1989, Section 3.5), who derives multiple steps ahead forecasts using the Kalman filter.

We compute one-step ahead forecasts for expanding windows, re-estimating the UC

models in every step. The latest estimated unobserved components determine the

forecasts, and the correlation assumptions influence the forecasts only via the estimated

components. Consequently, an economic slowdown or a break in the mean of growth

rate of real GDP is reflected in the forecasts with lags.

The unobserved components model provides a framework to decompose and forecast

trends and cycles in GDP. However, because both trends and cycles are unobserved,

we cannot evaluate and compare forecasts using forecasting errors of trends and cycles.

Below we evaluate the forecasts based on alternative UC models indirectly by comparing

real GDP growth rate forecasts.

3 Data

We retrieve quarterly real GDP series of the G7 countries from Thomson Reuters Data-

stream. The series span from 1960Q1 to 2014Q4. They are calculated using a constant

price level in the local currency and seasonally adjusted. We then take the natural

logarithm and multiply by 100, so that we can interpret output gaps as deviations from

the long-run trend in percent. We compute quasi-real time out-of-sample forecasts from
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1994Q1 to 2014Q4 which means that to forecast the trends and cycles in the period

t+ 1, all past observations up to and including period t are used for estimation.

To detect drift breaks in the trend function, we compute the growth rate of real

GDP (∆yt) in percentages by taking the first difference of the natural logarithm of

the real GDP series multiplied by 100. We use the Bai-Perron algorithm to detect the

break dates taking 5 as the maximum number of breaks. The Bayesian Information

Criterion (BIC) assists the selection of the breaks. Figures A.1 and A.2 in the Appendix

display the estimated number of breaks and the last break date associated with each

forecasting period for the G-7 countries, assuming a minimum distance between breaks

of 0.02 times the sample length.

A striking observation is that the Global Financial Crisis (GFC) is not consistently

identified in all countries in estimation samples from 2009 onwards. In France and Italy

the Bai-Perron algorithm does not pick up the GFC at all, whereas in Canada and

Germany the crisis is picked up in a few samples that end around 2009. Only in Japan,

the U.K. and the U.S. the GFC seems to have had an impact throughout the expanding

estimation samples.

4 Forecasts

Figures 1–7 show the real GDP series for the G-7 countries, together with the one-

quarter ahead forecasts for real GDP, trends and output gaps. The results are based

on 84 out-of-sample forecasts starting from 1994Q1 and ending at 2014Q4. We distin-

guish forecasts from UC models with no breaks without correlated innovations (Wat-

son) and with correlated innovations (MNZ), and with breaks (Watson+Break and

MNZ+Break).
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Figure 1: One-quarter ahead forecasts of real GDP on Canada and its trends and cycles
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Figure 2: One-quarter ahead forecasts of the real GDP in France and its trends and
cycles
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Figure 3: One-quarter ahead forecasts of real GDP in Germany and its trends and
cycles
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Figure 4: One-quarter ahead forecasts of real GDP in Italy and its trends and cycles
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Figure 5: One-quarter ahead forecasts of real GDP in Japan and its trends and cycles

Dates of forecasts 
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Figure 6: One-quarter ahead forecasts of real GDP in the U.K. and its trends and cycles

Dates of forecasts 
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Figure 7: One-quarter ahead forecasts of real GDP in the U.S. and its trends and cycles

Dates of forecasts
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The alternative assumptions with respect to innovation correlation and drift break

result in very different output trend and gap forecasts. For most of the G7 countries

(France is the exception), restricting correlation between trend and cycle innovations to

zero and incorporating no drift breaks, produces rather smooth output trend forecasts.

Allowing for non-zero correlation (the MNZ results) can achieve a similar outcome in

trend forecasts as models incorporating breaks. The common result is that both spe-

cifications forecast a deeper decline in output trend when the economy is experiencing

recession, see for example the trend forecasts around the recent GFC periods.

Allowing for non-zero correlation yields more volatile forecasts of output gaps than

imposing zero correlation for Canada, Germany and Japan. In these cases, allowing

for structural breaks in the drift of the trend equation results in a “smoother” output

gap forecast—see the bottom panels of each of Figures 1, 3 and 5. In contrast, in the

U.K. and U.S., restricting the correlations to zero, with no drift breaks, results in more

volatile output gap forecasts, but leads to smooth trend forecasts. Allowing for non-

zero correlation has a similar effect to incorporating breaks, but with less pessimistic

trend forecasts during recession period.

Comparing the forecasts of real GDP over different model specifications, we observe

that the turning points indicated by the forecasts are generally the same, regardless

of whether correlated innovations or breaks in the drifts are incorporated. However,

these turning points are forecast with a delay compared to the realization. Take France

in Figure 2 as an example. Although two breaks are consistently detected over the

expanding samples, as shown in the Appendix, each of the models, with and without

correlated shocks and/or trend breaks forecast a slowdown in GDP at the same point.

The actual occurrence of this turning point is only one quarter earlier, in 2008Q1.
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5 Forecast evaluation

Table 1 reports Mean Squared Forecast Errors (MSFEs) of real GDP growth rate fore-

casts for the G-7 countries. The AR(1) column in Table 1 shows AR(1) outcomes for

comparison. At least one of the UC models produces better GDP growth rate forecasts

than an AR(1) specification for four out of the seven countries—otherwise our results

are consistent with existing evidence that it is difficult to empirically outperform the

AR(1) model.

Table 1: Out-of-sample MSFEs for one-quarter ahead real GDP growth
forecasts

AR(1) MNZ MNZ+Break Watson Watson+Break

Canada 0.3036 0.3093 0.3101 0.3956 0.3808
France 0.4162 0.4372 0.3692 0.4795 0.3534
Germany 0.8053 0.8244 0.8848 0.8817 0.9465
Italy 2.2295 2.2780 1.7747 2.7767 1.8880
Japan 1.5886 1.3765 1.4316 2.0786 1.5402
U.K. 0.3638 0.3762 0.4975 0.3879 0.5040
U.S. 0.3627 0.3523 0.3796 0.3672 0.3675
NOTE The out-of-sample contains 84 observations from 1994Q1 to 2014Q4.

Based on the Diebold-Mariano test outcomes3 listed in Table 2, we graphically

summarize the forecasting performance of the UC models in Figure 8.

3We also performed the Clark-West (2007) tests for forecasts produced by nested models, and the
outcomes tend to favour the largest model, MNZ+Break.
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Table 2: Out-of-sample Diebold-Mariano test results for 1-quarter ahead real GDP
growth forecasts

MNZ MNZ+Break Watson Watson+Break

Canada AR(1) -0.4213 -0.9469 -2.0162∗∗ -1.7187∗∗

MNZ -1.0640 -1.7321∗∗ -1.7538∗∗

MNZ+Break -1.0015 -1.9069∗∗

Watson -0.5302

France AR(1) -1.3557∗ -0.9261 -2.5404∗∗∗ 1.7540∗∗

MNZ 1.4075∗ -1.7685∗∗ 1.9700∗∗

MNZ+Break -1.8622∗∗ 0.4393
Watson 2.7300∗∗∗

Germany AR(1) -0.4560 -0.6725 -1.6231∗ -1.0903
MNZ -0.7490 -1.0591 -1.2749
MNZ+Break 0.0279 -1.7083 ∗∗

Watson -0.5759

Italy AR(1) -0.2507 3.3984∗∗∗ -2.1191∗∗ 2.6818∗∗∗

MNZ 2.4543∗∗ -3.8777∗∗∗ 1.7910∗∗

MNZ+Break -3.3740∗∗∗ -2.5922∗∗∗

Watson 2.9555∗∗∗

Japan AR(1) 2.0051∗∗ 0.9911 -2.2816∗∗ 0.2401
MNZ -0.7105 -3.3001∗∗∗ -1.3642∗

MNZ+Break -2.4471∗∗∗ -1.0236
Watson 2.1260∗∗

U.K. AR(1) -0.4921 -1.8625∗∗ -0.9984 -2.0921∗∗

MNZ -1.6060∗ -1.0046 -1.7738∗∗

MNZ+Break 1.4381∗ -0.5068
Watson -1.6373∗

U.S. AR(1) 0.6607 -0.5019 -0.3398 -0.1738
MNZ -0.9887 -1.0743 -0.6248
MNZ+Break 0.3836 0.9910
Watson -0.0100

NOTE This table reports Diebold-Mariano test statistics when the null hypothesis is that the row
and column forecasts have equal predictability. A large positive statistic supports the
alternative that the column forecast is better than the row forecast, while a large negative
statistics supports the alternative that the row forecast is better than the column forecast.
A triple asterisk, a double asterisk and a single asterisk show that the null is rejected at the
1%, 5% and 10% level of significance, respectively.
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The horizontal axis presents a number of hypotheses around whether the forecasting

performance of one model outperforms another according to the Diebold-Mariano tests

presented in Table 2; that is the notation WB>MNZ in the first column of Figure 8

implies a test of whether the Watson specification allowing for break outperforms the

MNZ without break specification. The vertical axis records whether the null hypothesis

is accepted (positive) or rejected (negative) with the + signs indicating a statistically

significant finding and o an insignificant finding.

Figure 8: Comparison of alternative UC models for forecasting GDP growth

WB>MNZ WB>MNZB WB>W W>MNZ W>MNZB MNZB>MNZ

-

0

+

NOTE. W stands for Watson; WB for Watson plus break; MNZB for MNZ plus Break.

A plus denotes a significant MSFE difference according to the Diebold-Mariano statistic at the 10%

level, or better; a circle denotes an insignificant difference. Pluses and circles in the positive (negative)

area indicate that the forecasts produced with the model specification before the > sign are better

(worse) than forecasts produced with the other specification.

We find that taking into account correlated innovations between trend and cycle

components has a positive effect on the quality of real GDP forecasts: the fourth column

in Figure 8 rejects the null that Watson forecasts are better than MNZ forecasts for all
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countries, significantly for four countries (Canada, Germany, Japan, U.K. and U.S.).

The inclusion of structural breaks seems to work for some countries (France, Italy),

but not for others (Germany, U.K., U.S.). For France both MNZ and Watson models

(MNZB and WB) with structural breaks produce similar quality forecasts, while for

Italy the MNZ plus break model performs best. For the U.S. the MNZ type of model

that allows for non-zero correlation performs better than the MNZ model plus break

and the Watson models, with and without break.

6 Conclusion

This paper has studied the relative importance of including correlated trend and cycle

innovations and/or structural breaks in the trend function in forecasting output trends

and output gaps for G7 countries using a unobserved component framework. The

one-step ahead forecasts of unobserved output trends and output gaps are evaluated

indirectly from GDP growth rate forecasts.

In forecasting real GDP growth allowing for non-zero correlations (MNZ) between

the trend and cycle innovations works better than assuming no correlation (Watson).

Allowing for drift breaks in the trend function improves forecasts for France and Italy,

but not for the other countries examined.

To conclude, we find that the forecasts of output trends and output gaps are affected

by whether correlation in innovations of cycle and trend and/or drift breaks are incor-

porated. For most of the countries, allowing non-zero correlation between trend and

cycle innovations and drift breaks results in forecasts of a deeper economic slowdown

during a recession than if the model is restricted to exclude these features. The two

types of restriction not only affect the magnitude of the output gaps forecasts, but also

their sign. For instance, allowing for correlation between trend and cycle innovations
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may produce a large positive output gap forecast in the next quarter, while the model

with zero correlation generates a negative output gap forecast.

Overall, in the face of uncertainty about the existence of breaks, policy makers

should be cautious in restricting models to zero correlation between innovations, as

we show considerable forecasting improvements can be obtained by incorporating the

simple evidence on correlated shocks. Although trend breaks attract considerable in-

terest in the measurement literature, in the absence of true information, it is demon-

strably more important to acknowledge the potential for trend and cycle innovations

to be correlated in forming GDP and output gap forecasts.
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Figure A.1: Estimated number of breaks and date of last breaks in the drift of real
GDP growth in Canada, France and Germany; the minimum break distance is 0.02T

1993Q41997Q4 2001Q4 2005Q4 2009Q4 2013Q4
Last date of the sample

0

1

2

3

4

5

T
he

 n
um

be
r 

of
 b

re
ak

s

Canada

1993Q41997Q4 2001Q4 2005Q4 2009Q4 2013Q4
Last date of the sample

1960Q1

1970Q1

1980Q1

1990Q1

2000Q1

2010Q1

E
st

im
at

ed
 la

st
 b

re
ak

 d
at

e

1993Q41997Q4 2001Q4 2005Q4 2009Q4 2013Q4
Last date of the sample

0

1

2

3

4

5

T
he

 n
um

be
r 

of
 b

re
ak

s

France

1993Q41997Q4 2001Q4 2005Q4 2009Q4 2013Q4
Last date of the sample

1960Q1

1970Q1

1980Q1

1990Q1

2000Q1

2010Q1

E
st

im
at

ed
 la

st
 b

re
ak

 d
at

e

1993Q41997Q4 2001Q4 2005Q4 2009Q4 2013Q4
Last date of the sample

0

1

2

3

4

5

T
he

 n
um

be
r 

of
 b

re
ak

s

Germany

1993Q41997Q4 2001Q4 2005Q4 2009Q4 2013Q4
Last date of the sample

1960Q1

1970Q1

1980Q1

1990Q1

2000Q1

2010Q1

E
st

im
at

ed
 la

st
 b

re
ak

 d
at

e

22



Figure A.2: Estimated number of breaks and date of last break in the drift of real GDP
growth in Italy, Japan, U.K. and U.S.; the minimum break distance is 0.02T
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