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Abstract

The rise of market power in the last decades is primarily driven by the largest
�rms. We propose a theory of these superstar �rms in which their technology in-
volves the ability to produce multiple products. Superstars interact with smaller
competitors and market share reallocations and product creation generate hetero-
geneous markup dynamics across �rms. Higher market shares of superstars increase
the parameter space for macroeconomic indeterminacy. Bayesian estimation of the
general equilibrium model suggests the importance of the endogenous ampli�cation
of the product creation channel and animal spirits play a non-trivial role in driving
U.S. business cycles.
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1 Introduction

Firms are not identical. Many markets are polarized and populated by a few relatively

big �rms mixed in with a greater number of smaller �rms that typically extort less

market power. Empirically such dispersion is well documented.1 In recent decades, this

polarization of markets has become more accentuated. Concretely, De Loecker et al.

(2020) report not only a steady and signi�cant increase of market power in the U.S. but

also that this increase of the average markup was foremost driven by the �rms in the top

percentiles, the so-called superstar �rms.

What are the e¤ects of increasing product market concentration on the workings of

the macroeconomy? And what is the role of the competition among big and smaller

�rms? This paper addresses such questions. It aspires to improve our understanding of

superstar �rms�e¤ects on macro-outcomes by proposing a tractable framework to study

dynamic economies with �rm heterogeneity. In particular, the paper provides a theoretical

structure that rationalizes the existence of superstars and also allows to examine the

in�uence of superstars on aggregate �uctuations. What is it that makes superstar �rms

special? In our arti�cial economy, these �rms have access to a technology that results in

more market power and larger market shares. Speci�cally, these technological di¤erences

embody Neary�s (2010) suggested characteristic of superstars:

�So far, the advantage of superstar �rms has not been speci�ed exactly.

One interesting and important case is where the superstar technology in-

volves the ability to produce a large number of products. In that case, the

small number of superstar �rms are multi-product �rms, while the remaining

insiders which constitute the competitive fringe are single-product �rms. This

con�guration is consistent with the empirical evidence [...].� [Neary, 2010, p

15]

Along these lines, we propose a model in which �rm heterogeneity manifests itself

in a group of �rms being able to produce multiple products and to gain larger market

power relative to mono-product �rms. This characterization parallels empirical work by

Bernard et al. (2010) who report that a considerable fraction of U.S. manufacturing �rms

produces in multiple �ve-digit SIC categories and account for well over 80 percent of total

sales. The theoretical framework then allows to shed light on the e¤ects of the superstar

�rm environment involving changes in market concentration and also of the dispersion of

market power. Of particular importance to us is explaining in a uni�ed way the observed

market power by a group of large �rms, their interactions with ordinary �rms and the

impact of that environment on aggregate economic behavior. Our theory predicts that

superstars charge a higher price, set larger markups and grab a larger market share,

1See De Loecker et al. (2020), Kehrig and Vincent (2021), and Edmond et al. (2023).
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thus, it provides a story of superstar �rms�coexistence and interactions with ordinary

�rms and it can explain various empirical �ndings such as in De Loecker et al. (2020).

For example, a rising market share of superstar �rms is compatible with a greater gap

between the markups of large and small �rms. We also show how this market structure

creates a parameter space for macroeconomic indeterminacy. This indeterminacy implies

that pro�t-seeking businessmen�s animal spirits can lead to self-ful�lling macroeconomic

outcomes. This indeterminacy mechanism is novel as it comes about from the superstars�

endogenously time-varying product creation and operates even when we keep constant

the number of �rms in the economy.2 The estimated version of the model using full

information Bayesian techniques suggests the endogenous ampli�cation mechanism of

product creation within superstar �rms is empirically important. Shocks to technology

and to the marginal e¢ ciency of investment explain about half of U.S. business cycles

and a non-trivial portion of these �uctuations is driven by realized animal spirits, i.e.,

non-fundamental swings between euphoria and pessimism.

This article comes in �ve parts. It begins by presenting the baseline model from which

we have stripped o¤ various bells and whistles that we insert into the full model when

estimating it. This approach allows us to highlight the main mechanisms that drive our

results. Section 3 analyses the local dynamics by presenting the parametric zones for
indeterminacy. The fourth section presents the Bayesian estimation of the full model.

We end the article by listing our conclusions.

2 Model

The economy is populated by two groups of �rms. One group consists of smaller mono-

product �rms. We will coin them ordinary �rms. The other �rms are superstars: they

produce multiple products and, consequently, have more market power. Both groups of

�rms produce di¤erentiated goods and adjust their markups according to �uctuations in

their market shares. The �rms�goods are bought by a perfectly competitive sector that

welds the varieties together into the �nal good that is used for consumption purposes

or added to the capital stock. People rent out labor and capital services. Firms and

households are price takers on factor markets. Time evolves in discrete steps.

2.1 Final goods

Similar to Shimomura and Thisse (2012), �nal output is a combination of products pro-

duced by N ordinary �rms andM multi-product superstar �rms.3 M and N are constant

2Broda and Weinstein (2010) report that net product creation is procyclical and mostly occurs within
�rms (rather than via entry and exit). Guo (2023) presents evidence that �rms�product scopes are
procyclical.

3We suppress the time index in these static equations for notational ease.
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for now so that we can pinpoint the role of time-varying product scopes as opposed to

�rm dynamics of entry and exit, which we will introduce later. Final output Y is then

Y =

 
NX
i=1

x(i)
��1
� +

MX
j=1

Y (j)
��1
�

! �
��1

(1)

in which � > 1 stands for the elasticity of substitution and x(i) is the amount produced

by mono-product �rm i. Like in Minniti and Turino (2013), since superstar �rms are

multi-product �rms, Y (j) is a composite good

Y (j) =

 Z S(j)

0

x(j; s)
��1
� ds

! �
��1

(2)

in which S(j) stands for the product scope and x(j; s) denotes the amount of variety s

produced by superstar �rm j. The symmetry of the elasticity of substitution � across

these CES bundlers allows to concentrate on the key e¤ects that arise from the market

structure. The CES aggregators imply a love of variety � = 1=(�� 1). The variety e¤ect
in (2) provides the bene�t of product creation for the superstar �rm.4 If it were zero,

superstars would not have any incentive to become multi-product �rms. The �nal pro�t

maximization problem yields two demand functions

x(i) =

�
p(i)

P

���
Y

x(j; s) =

�
p(j; s)

P

���
Y

and the aggregate price index

P =

 
NX
i=1

p(i)1�� +
MX
j=1

P (j)1��

! 1
1��

with

P (j) =

 Z S(j)

0

p(j; s)1��ds

! 1
1��

:

2.2 Intermediate good �rms

Varieties supplied by superstar �rms are produced using labor h(j; s) and capital services

�(j; s) � Uk(j; s). The variable U stands for the utilization rate set by the owners of

physical capital and it is the same for every unit of capital k rented. Firms hire the two

4More broadly, the love of variety can be interpreted as a stand-in for other e¢ ciency gains of product
creation within multi-product �rms (for example, see Pavlov, 2021).
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services on perfectly competitive factor markets at the wage rate w and the rental rate

of capital services r. Superstar �rm j maximizes pro�ts

�(j) =

Z S(j)

0

[p(j; s)x(j; s)� wh(j; s)� r�(j; s)] ds

subject to the production technologyZ S(j)

0

x(j; s)ds =

Z S(j)

0

[�(j; s)�h(j; s)1�� � �s]ds� �m; 0 < � < 1:

The variety-level �xed cost �s restricts the amount of varieties the �rm produces. The

�rm-level �xed cost �m provides economies of scope and helps to pin down steady state

pro�ts. Ordinary �rm i only produces a single variety and its production technology is

x(i) = �(i)�h(i)1�� � �n

in which the �xed cost �n is calibrated so that it has zero pro�ts at the steady state. Given

that both groupings of �rms hire on the same factor markets, the �rst-order conditions

are

w = (1� �)��(j; s)�h(j; s)�� = (1� �)��(i)�h(i)�� (3)

r = ���(j; s)��1h(j; s)1�� = ���(i)��1h(i)1�� (4)

in which

� � ���(1� �)��1r�w1�� (5)

are the marginal costs that are the same for both �rm types.

The number of �rms in this economy is endogenously determined and, given its su-

perstar character, this number may not be as large to meet the Dixit and Stiglitz (1977)

approximation. Thus, we adopt Yang and Heijdra�s (1993) suggestion that �rms take into

account the e¤ect of their prices on the aggregate price index P .5 Due to each variety

having the same production technology, superstar j charges the same price for all of its

varieties, i.e., p(j; s) = p(j; k) = p(j). The markups are

�(j) � p(j)

�
=

�

�
1�

�
P (j)
P

�1���
�

�
1�

�
P (j)
P

�1���
� 1

and

�(i) � p(i)

�
=

�

�
1�

�
p(i)
P

�1���
�

�
1�

�
p(i)
P

�1���
� 1

5Our economy can also be interpreted as a representative sector where �rms take into account the
e¤ect of their prices on the sectoral price index. We abstract from explicitly modelling sectors to keep
the presentation tidy.
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in which �
P (j)

P

�1��
=
P (j)Y (j)

PY
� �(j) and

�
p(i)

P

�1��
=
p(i)x(i)

PY
� �(i):

The markups are thus positively related to the �rms�market shares � and for the superstar

�rm this market share is increasing in the number of varieties S(j) which is endogenously

determined via maximizing pro�ts

�(j) =

�
p(j)� �
p(j)

�
PY �(j)� �[S(j)�s + �m]

with respect to S(j). Each superstar takes into account the e¤ect of its product scope

on its own prices, prices of all other �rms, and the aggregate price index. The �rst-order

condition, @�(j)
@S(j)

= 0, implies

��s = �PY

�
p(j)� �
p(j)

�2
@�(j)

@S(j)
+ Y �(j)

�
p(j)� �
p(j)

�
@P

@S(j)
(6)

where @�(j)
@S(j)

> 0 and @P
@S(j)

< 0 (see the Appendix for details). The term on the left-hand

side in (6) represents the direct cost of expanding the product scope. The �rst term on

the right-hand side represents the gain to market share due to the love of variety in the

CES bundler (2). The second term indicates that pro�ts are reduced due to the higher

product scope reducing the aggregate price index. Put di¤erently, the variety e¤ect is

required for multi-product �rms to exist.

2.3 Symmetric equilibrium

In the symmetric equilibrium each superstar �rm produces the same number of varieties

S(j) = S, charges the same price p(j) = pm, and has the same market share �(j) = �m.

Similarly, for the ordinary �rms p(i) = pn and �(i) = �n hold. The markups arrange to

�m =
� (1� �m)

� (1� �m)� 1
> �n =

� (1� �n)

� (1� �n)� 1
>

�

� � 1 (7)

and

�m = Sp1��m > �n = p1��n

with the �nal good set as the numeraire P = 1. Superstar �rms have larger market shares

and markups than ordinary �rms due to the variety e¤ect and the resulting multi-product

nature. Since both ordinary and superstar �rms hire labor and capital services from

the same factor markets and both have constant returns to scale production functions

(abstracting from �xed costs), (3) and (4) imply

w

r
=
1� �

�

UKm

Hm

=
1� �

�

UKn

Hn
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in which Km = MSkm, Kn = Nkn, Hm = MShm and Hn = Nhn. Therefore, all �rms

choose identical capital-labor intensities

Km

Hm

=
Kn

Hn

and factor markets are in equilibrium, that is, K = Km+Kn andH = Hm+Hn. From (5)

and (7), we can see that superstars charge a higher price than their ordinary counterparts:

pm = �m�
��(1� �)��1r�w1�� > pn:

Summing production and demand functions of ordinary �rms

NX
i=0

x(i) =
NX
i=0

�
p(i)

P

���
Y =

NX
i=0

�
�(i)�h(i)1�� � �n

�
and then applying symmetry yields

Y =
pn
N�n

�
U�K�

nH
1��
n �N�n

�
:

Similarly, superstar output is

MX
j=1

Z S(j)

0

x(j; s)ds =
MX
j=1

Z S(j)

0

�
p(j; s)

P

���
Y ds =

MX
j=1

 Z S(j)

0

�
�(j; s)�h(j; s)1�� � �s

�
ds� �m

!

and

Y =
pm
M�m

(U�K�
mH

1��
m �MS�s �M�m):

Lastly, the �rst-order condition (6) can be rearranged to de�ne the product scope

S = f(�m; �n; N;M; �)
Y

�spm
: (8)

It is strongly procyclical and the derivation of the function f can be found in the Appen-

dix.

2.4 Households

Households are personi�ed by a representative agent who chooses sequences of consump-

tion Ct and hours worked Ht to maximize discounted lifetime utility

1X
t=0

�t
�
lnCt � �

H1+�
t

1 + �

�
� > 0; � > 0; � � 0

in which � is the discount rate, � denotes the disutility of working and � is the inverse

of the Frisch labor supply elasticity. The agent owns all �rms and receives their pro�ts

�t. The period-budget is constrained by

wtHt + rtUtKt +�t � It + Ct
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in which It is investment that adds to the capital stock

Kt+1 = (1� �t)Kt + It

and the depreciation rate varies according to

�t =
1

�
U �
t � > 1:

The �rst-order conditions from the agent�s maximization problem comprise of the labor

supply

�H�
t Ct = wt

the Euler equation
1

Ct
=

1

Ct+1
� (rt+1Ut+1 + 1� �t)

and the optimal rate of capital utilization

rt = U ��1
t :

The steady state versions of these equations then pin down � = (1=� � 1 + �) =�.

3 Dynamics and steady state

Let us now analyze the local dynamic properties of the model. The equilibrium conditions

are log-linearized around the steady state and the dynamical system is arranged to" bKt+1bCt+1
#
= J

" bKtbCt
#
:

Hatted variables denote percentage deviations from their steady state values and J is the

2 � 2 Jacobian matrix of partial derivatives. Consumption Ct is a non-predetermined
variable and capital Kt is predetermined. Indeterminacy, and the potential presence of

animal spirits, requires both roots of J to be inside the unit circle.

For given calibrations of markups and �, the market shares in the steady state are

�m = 1�
�m

�m � 1
1

�
> �n = 1�

�n
�n � 1

1

�
:

Since these shares sum to unity, M�m + N�n = 1, we can calibrate the market share of

superstar �rms M�m to pin down the number of �rms in the steady state

N =
1�M�m

�n

and

M =
1

�m

�
1 + N�n

M�m

� :
8
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Figure 1: Indeterminacy without entry and exit.

It is then straightforward to show that for each calibration of �n, the lower bound on �

is �min � �n=(�n � 1): As � approaches this lower bound, the number of ordinary �rms
approaches in�nity and their markups become constant at �=(��1) as in the monopolistic
competition framework. This case is also where the love of variety � = 1=(� � 1) hits its
maximum. For the upper bound, �max cannot be greater than either �n=(�n�1)(1+ N�n

M�m
)

or �m=(�m � 1)(1 + M�m
N�n

) to guarantee M � 1 and N � 1.
Figure 1 visualizes the feasible parameter space for the existence of both kind of

�rms. For easier comparison to previous studies, for example Wen (1998), the standard

parameters are calibrated at a quarterly frequency to � = 0:3, � = 0:99, � = 0:025

and � = 0. We initially set the market share of superstars at 50 percent. Figure 1

is constructed by setting � = �min, which implies that ordinary �rms are monopolistic

competitors, i.e., N ! 1 and have constant markups �n =
�min

�min�1 = 1 + �.6 Along

the graph�s lower boundary, the 45 degree line where �m = �n, the markups of both

sets of �rms would be identical. It is also the con�guration along which M ! 1 and

superstars would become mono-product �rms. O¤ the 45 degree line, however, superstars

are multi-product �rms, their markups are procyclical and always higher than ordinary

�rms�markups. The reason is that product creation, both dynamically and in steady

state, steals market share from ordinary �rms which raises superstars�markups. Finally

at the upper boundary, the number of superstars approaches one and the product scope

becomes large.

6The area of feasible markup combinations in Figure 1 would be una¤ected if �min < � � �max,
however, ordinary �rms�markups would no longer be constant.
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A

Figure 2: Indeterminacy with entry and exit.

3.1 Indeterminacy mechanism and �rm dynamics

Figure 1 also splits the feasible area into indeterminacy and determinacy zones. The

darker zone denotes indeterminacy whereas in the lighter shaded area and on the 45 de-

gree line the economy�s equilibrium is unique. A necessary condition for indeterminacy

is the presence of a certain level of market power, precisely �m > �n = 1:104. In other

words, without multi-product superstars, this economy would always be determinate. In-

determinacy arises from product creation and the associated variety e¤ect since there is

no entry or exit of �rms. The indeterminacy is best understood by means of the usual

equilibrium wage-hours locus (Farmer and Guo, 1994). Product creation within super-

star �rms makes this locus upwardly sloping by way of the presence of love of variety

in the CES aggregator (2). The composite good from each superstar can be created

more e¢ ciently the greater the product scope and variations in product scope generate

an endogenous e¢ ciency wedge. Then, if economic sentiments shift into optimistic gear,

the labor supply curve shifts up along the upwardly sloping wage-hours locus, thereby

validating the animal spirits. Product scope adjustments together with �rm heterogene-

ity thus provide a novel mechanism for indeterminacy and markup dynamics by way of

market share reallocations even without entry and exit of �rms. As superstars�markups

are procyclical, for a given �n, raising (steady state) �m increases the markup elasticity

that may push the economy into its determinacy region in Figure 1. That is, the con-

tractionary e¤ect of the procyclical markup overcomes the e¢ ciency gain from product

creation. This outcome disappears once we consider superstars�dynamics in interaction

with the entry and exit of ordinary �rms.
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Figure 3: Indeterminacy with higher market share of superstars.

In the next version of the model, the number of ordinary �rms Nt is allowed to vary

over time and adjusts per free entry that forces their pro�ts to zero.7 That is, each period

�rm i�s pro�t is

�t(i) =

�
pt(i)� �t
pt(i)

�
PtYt�t(i)� �t�n = 0

which in symmetric equilibrium boils down to

pn;t = (�n;t � 1)
�n;tYt
�n

to determine the number of ordinary �rms.8 Assuming that entry and exit of superstar

�rms is insigni�cant at business cycle frequencies, we continue with the assumption of a

constant M . Figure 2, in which we again keep � at �min, displays how entry and exit af-

fects the indeterminacy region.9 The necessary and su¢ cient condition for indeterminacy

is �m � �n = 1:104. Indeterminacy not only remains but now exists for a greater range

of parameters due to the interaction between entry of ordinary �rms and the product

scope decisions of superstars. Entry pushes the market shares of both �rm types down-

wards. However, superstar �rms are able to defend their market shares by increasing

their product scopes. Since higher product scopes and a larger number of ordinary �rms

both increase e¢ ciency at the hand of the variety e¤ect, the upwardly sloping wage-hours

locus becomes steeper.
7We now attach the time index to �rms�variables.
8The entry decision is static to keep the model tractable. Indeterminacy remains when we introduce

dynamic entry as in Bilbiie et al. (2012) (see the Appendix).
9Again the area of feasible markup combinations would be unaltered if �min < � � �max.
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Figure 4: Indeterminacy with separated variety e¤ect.

What is the e¤ect of an increase in the market share of superstars? In Figure 3,

M�m is now increased to 60 percent from the previous calibration of 50 percent. The

indeterminacy zone increases further. If we compare points A and B in Figures 2 and

3, thus keeping the markups constant, the higher market share of superstars supports a

higher M while the individual superstar �rm has the same product scope.

As emphasized earlier, the love of variety governs the gain to product creation and is

the central ampli�cation mechanism for equilibrium indeterminacy. Similar to Pavlov and

Weder (2017), we now separate the variety e¤ect � from the elasticity of substitution �.

Isolating the variety e¤ect allows us to directly set the �rms�bene�t of product creation

without changing the steady state number of �rms or their market power. Speci�cally,

the CES bundlers are now

Yt =

 
N

�(��1)�1
�

t

NtX
i=1

xt(i)
��1
� +M

�(��1)�1
�

MX
j=1

Yt(j)
��1
�

! �
��1

and

Yt(j) =

 
St(j)

�(��1)�1
�

Z St(j)

0

xt(j; s)
��1
� ds

! �
��1

in which � > 0 denotes the love of variety. Setting � = 1=(� � 1) brings back the CES
aggregators from Section 2. Figure 4 plots parameter zones by varying � and � for given

steady state markups, �m = 1:8 and �n = 1:3. Beginning from the right, the indetermi-

nacy zone is partitioned into a darker area in which superstars�markups are procyclical

as before and a lighter shaded zone in the middle where they are countercyclical. Su-

perstar markups are always countercyclical in the determinacy zone, the zone furthest to

12



the left. As you can see in Figure 4, indeterminacy requires a certain amount of love for

variety as explained earlier. For orientation, at � = 1=(�min�1) the model is in the same
point B as in Figure 3. Beginning in B is a line connecting the combinations at which

� = (1+�)=�, i.e., the formulation in (1) and (2). Along the graph�s lower boundary �min,

ordinary �rms are monopolistic competitors with constant markups. For �min < � � �max

ordinary �rms�markups are no longer constant but countercyclical. This explains why

the boundary between determinacy and indeterminacy is not vertical: if ordinary �rms�

markups are su¢ ciently countercyclical, indeterminacy can arise at � = 0:06 instead of

� = 0:104 at �min. The �gure also indicates that procyclical markups of superstars are
only possible in the indeterminacy region. Markups of superstar �rms become counter-

cyclical for smaller love of variety. This is because a lower variety e¤ect implies a weaker

gain to product creation and ability to steal market share from ordinary �rms. The entry

of ordinary �rms then reduces market shares of both �rm types. Lastly, through the lens

of our model, the �nding reported by Burstein et al. (2023), namely that large (French)

�rms�markups are procyclical, can not arise in the determinacy region of the model.

4 Estimation

This section presents empirical evidence on the importance of the product creation chan-

nel and superstars�roles in explaining macroeconomic time series and replicating basic

business cycle facts. So far, we have shown that superstar �rms can lead to macroeco-

nomic instability. This opens the possibility of animal spirits driving business cycles and

we examine their importance in combination with various fundamental shocks. In doing

so, we extend our model by exogenous growth, various fundamental aggregate supply and

demand shocks as well as external consumption habits. We continue with a separable love

of variety and endogenous entry and exit of ordinary �rms as described in the previous

section.

4.1 Bells and whistles

We add a mix of aggregate supply and demand disturbances to the model. The �rst such

fundamental shock takes the form of labor augmenting technological progress At and it

a¤ects all �rms equally. Aggregate output is now

Yt =
pm;t
M�m;t

[(UtKm;t)
�(AtHm;t)

1����s;tMSt��m;tM ] =
pn;t
Nt�n;t

[(UtKn;t)
�(AtHn;t)

1���Nt�n;t]

in which we assume all three �xed costs grow at the average rate of technological progress.

This technological progress is non-stationary and follows the process

lnAt = lnAt�1 + ln at
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with

ln at = (1�  A) ln a+  A ln at�1 + "At

in which 0 �  A < 1 governs the persistence of the shock, ln a is the average growth rate

and "At is an i.i.d. disturbance with variance �
2
A. Next, shifts of marginal e¢ ciency of

investment zt a¤ect the transformation of investment to physical capital as in Greenwood

et al. (1988)

Kt+1 = (1� �t)Kt + ztIt:

The technological shifter follows the exogenous process

ln zt = (1�  z) ln z +  z ln zt�1 + "zt :

As laid out by Justiniano et al. (2011), this shock can be a proxy for capturing dis-

turbances in �nancial markets. Intuitively, a positive shock to zt represents a boom in

�nancial markets that reduces borrowing costs for �rms, leading to a rise in investment.

The �rst fundamental demand disturbance is a taste shock �t that increases the

marginal utility of consumption as in Christiano (1988). Lifetime utility then becomes

E0

1X
t=0

�t
�
�t ln(Ct � bCt�1)� �

H1+�
t

1 + �

�
in which E0 denotes the expectations operator and the parameter 0 � b < 1 determines

the degree of external consumption habits. The taste shock follows the process

ln�t = (1�  �) ln� +  � ln�t�1 + "�t :

Besides the interpretation of purely changing tastes, this shock could also be interpreted

as a¤ecting the economy�s labor wedge, i.e., the gap between the marginal rate of substi-

tution between consumption and leisure and the marginal product of labor. Hence, it can

be interpreted as a stand-in for other shocks that a¤ect this wedge. The second demand

shock is to government expenditures, Gt, �nanced by lump sum taxes. Consequently, the

economy�s resource constraint becomes Yt = Ct + It + Gt: Government spending follows

a stochastic trend

Agt = (A
g
t�1)

 ag(At�1)
1� ag

in which  ag governs the smoothness of the trend relative to the trend in output. Then,

detrended government spending is gt � Gt=A
g
t and follows

ln gt = (1�  g) ln g +  g ln gt�1 + "gt :

As in Pavlov and Weder (2017), the non-fundamental animal spirits shock is modelled

as an expectation error to output that is unrelated to any fundamental changes in the

14



economy10. Under indeterminacy, the economy�s response to fundamentals is not uniquely

determined, and we model the behavior of output as

bYt = Et�1bYt + 
A"At + 
z"zt + 
�"�t + 
g"gt + "st (9)

in which the parameters 
A, 
z, 
� and 
g determine the e¤ects of technology, in-

vestment, taste and government shocks on output. The term "st is i.i.d., independent of

fundamentals, comes with variance �2s and it can be thought of as pro�t-seeking busi-

nessmen exercising their animal spirits.

4.2 Bayesian estimation

The model is estimated by way of full-information Bayesian methods using U.S. data with

the observables made up of quarterly real per capita growth rates of output, consump-

tion, investment, government spending and the logarithm of per capita hours worked.

Justiniano et al. (2011) use credit spread data to identify investment shocks. Similarly,

we adopt the spread between BAA corporate bonds and the market yield on 30 year

Treasury securities to identify disturbances to the marginal e¢ ciency of investment as

in11

spreadt = {bzt { < 0: (10)

We focus on the 1990:I-2019:IV period to coincide with the rise of superstars and to

abstract from the COVID-19 pandemic as our small scale model is not designed to deal

with its complexities.12 The Appendix sets out the sources and construction of the data.

We follow Bilbiie et al. (2012) and de�ate Yt, Ct, It, and Gt in the model by a

data-consistent price index to obtain variables that are better comparable to observed

data which does not take into account the welfare improvements of product variety at

quarterly frequency. For example, data-consistent output is

Y d
t �

PtYt
pt

� PtYt
pn;t

Nt�t;n +
PtYt
pm;t

M�t;m

which removes the welfare gains that originate from entry and product scope adjust-

10Farmer et al. (2015) show that estimation results are robust to the choice of the variable for the
expectation error and we con�rm this.
11Despite having more shocks than observables, we also considered a measurement error in (10) as in

Justiniano et al. (2011). The error only explained one percent of the spread. To be in line with Pagan
and Robinson (2022), we chose to keep the same number of shocks as observables.
12De Loecker et al. (2020) show that the increase in market power of biggest �rms largely takes shape

post 1990.
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ments.13 Accordingly, the measurement equations are

26666664
100 ln(Yt=Yt�1)
100 ln(Ct=Ct�1)
100 ln(It=It�1)
100 ln(Gt=Gt�1)
100 (lnHt=H)

spreadt

37777775 =
2666666664

cY d
t � cY d

t�1 + batcCd
t � cCd

t�1 + batbIdt � bIdt�1 + batcGd
t � cGd

t�1 + bagt � bagt�1 + batbHt

{bzt

3777777775
+

26666664
a
a
a
a
0
0

37777775+
26666664
"m:e:t

0
0
0
0
0

37777775
in which a = 100(a�1), agt = Agt=At = (a

g
t�1)

 aga�1t , "
m:e:
t is a measurement error restricted

to account for not more than ten percent of output growth and H is the average hours

worked over the sample period.

We have six shocks in the model: four fundamental shocks, animal spirits and the

measurement error. A common practice estimating models with both determinacy and in-

determinacy is to either estimate the model separately under both regimes and then check

which speci�cation �ts better (Lubik and Schorfheide, 2004) or to estimate the model

simultaneously over the entire parameter space (for example, Hirose et al., 2023). How-

ever, an issue is that model versions under indeterminacy feature one additional shock,

i.e., the animal spirits. This situation implies there are more shocks than observables in

the estimations. Pagan and Robinson (2022) show when there is such an excess of shocks,

the estimated shock innovations will be correlated which consequently questions the use-

fulness of variance decompositions. However, a key purpose of our empirical exercise is

to assess the relative importance of the model�s shocks for driving business cycles. Thus,

we refrain from estimating with excess shocks and estimate the model separately under

the two parametric zones. For the model�s indeterminacy version we have six shocks and

the same number of observables. To keep up the situation for the determinacy version,

we add an additional fundamental shock to that model version �a transitory technology

shock �to avoid stochastic singularity.14 In the spirit of Lubik and Schorfheide (2004)

we can �test for indeterminacy�by comparing the �t of the two speci�cations in terms

of their marginal data densities.

4.2.1 Calibration and priors

We calibrate a subset of the model parameters. We set the quarterly growth rate of labor

augmenting technological progress to 0:34 percent to be consistent with the growth rate

of per capita real GDP over the sample period and the share of government expenditures

G=Y to 0:19: In line with Barkai (2020), we calibrate the share of �xed costs in output so

that steady state pro�ts are ten percent. Together with our calibration of � = 0:3; this

13In line with this, we set the shocks to government expenditures and animal spirits to directly a¤ect
the data-consistent variables Gdt and Y

d
t , respectively.

14This setup also provides fairness in the sense of equal number of shocks. Information on the deter-
minate version of the economy is provided in the Appendix.
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Table 1: Prior and posterior distributions
Prior Posterior

Name Range Density Mean Std. Dev. Mean 90% Interval
� R+ Normal 0.085 0.05 0.20 [0.16,0.23]
b [0,1) Beta 0.5 0.1 0.48 [0.40,0.57]
 A [0,1) Beta 0.5 0.2 0.01 [0.00,0.01]
 z [0,1) Beta 0.5 0.2 0.81 [0.75,0.88]
 � [0,1) Beta 0.5 0.2 0.96 [0.94,0.98]
 g [0,1) Beta 0.5 0.2 0.99 [0.98,0.99]
 ag [0,1) Beta 0.5 0.2 0.76 [0.58,0.99]
�s R+ Inverse Gamma 0.1 Inf 0.26 [0.23,0.29]
�A R+ Inverse Gamma 0.1 Inf 0.68 [0.60,0.75]
�z R+ Inverse Gamma 0.1 Inf 0.07 [0.04,0.10]
�� R+ Inverse Gamma 0.1 Inf 0.91 [0.74,1.05]
�g R+ Inverse Gamma 0.1 Inf 0.81 [0.72,0.89]
�m:e: [0; 0:18] Uniform 0.09 0.05 0.18 [0.18,0.18]

A [-3,3] Uniform 0 1.73 -0.48 [-0.58,-0.38]

z [-3,3] Uniform 0 1.73 1.78 [0.86,2.70]

� [-3,3] Uniform 0 1.73 0.35 [0.25,0.45]

g [-3,3] Uniform 0 1.73 0.05 [-0.03,0.13]
{ [-20,0] Uniform -10 5.77 -4.90 [-7.13,-2.57]

This table presents the prior and posterior distributions for model parameters and shocks under
indeterminacy. Inf implies two degrees of freedom for the inverse gamma distribution. Standard
deviations are in percent terms. Log-data density (modi�ed harmonic mean): -775.52.

implies an aggregate labor share of 63 percent which is similar to Elsby et al. (2013). At

56 percent, the labor share of superstars is lower which aligns with Autor et al (2020).

We calibrate �m, �n, �, and M�m as follows. A large portion of �rms are multi-product

producers. Bernard et al. (2010) report that close to half of U.S. manufacturing �rms

produce in multiple �ve-digit SIC categories. These �rms account for well over 80 percent

of total sales. Accordingly, we cautiously calibrate the market share of superstars to 60

percent, i.e., M�m = 0:6. A conservative interpretation of the composition of markups

reported in De Loecker et al. (2020) suggests a markup of large �rms to be around

�m = 1:8 as this is the rough average for the (revenue weighted) top 75 to top 90

percentiles of �rms. Smaller �rms, say the top 50 percentile, have seen a steady markup

at around �n = 1:3. Lastly, we agonistically pick � = 5; which falls in the middle of its

admissible values. The values of the other standard parameters remain the same as in

Section 3. These calibrations form our benchmark and robustness is discussed later.

The remaining parameters are estimated. These include the love of variety, �, ex-

ternal habits, b; the coe¢ cient mapping the credit spread to investment shocks, {, and
parameters that govern the stochastic processes:  A,  z,  �,  g,  ag, �s, �A, �z, ��, �g,


A, 
z, 
�, 
g, and �m:e:. Table 1 presents the initial prior and posterior distributions.

We employ a normal distribution, truncated at zero, for the variety e¤ect �. Since this

parameter is central to our ampli�cation mechanism which generates indeterminacy, we
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set the prior to give a prior probability of determinacy of roughly 50 percent. A wide

uniform distribution is employed for the expectation error parameters 
A, 
z, 
�, 
g and

the credit spread coe¢ cient {. The shock processes follow the standard inverse gamma
distribution.

4.2.2 Estimation results

We estimate the model separately under determinacy and indeterminacy as explained

above.15 The choice of priors leads to a prior predictive probability of indeterminacy of

0:50, thus, indicates no prior bias toward either determinacy or indeterminacy. Our �rst

main result is that, through the lens of our model, the post-1990 period is best char-

acterized by the indeterminate version of our model. Speci�cally, the log data density

is �775:52 under indeterminacy versus �914:59 for its determinate competitor16. The
central di¤erence between the two economies is that the estimated variety e¤ect is es-

sentially zero in the determinacy model which in turn implies a negligible role of the

product creation channel and multi-product �rms. Under indeterminacy, the love of va-

riety is non-trivial. In fact, Table 1 shows that it is estimated to be about 0:20. This

value, while below Section 2�s original CES con�guration 1=(� � 1) = 0:25, indicates a
strong ampli�cation mechanism of product creation. Thus, the model�s better �t of the

data is importantly connected to the product creation channel of superstars in explaining

macroeconomic time series and replicating basic business cycle facts.

Table 1 furthermore reports a zero persistence of the permanent technology shock and,

consistent with the real business cycle model, a positive shock causes a fall in detrended

output at impact. The investment shock is moderately persistent and as expected, raises

output. Finally, both demand shocks are highly persistent and also cause an increase in

output. The table also shows the estimated shock volatilities including a non-negligible

estimate for animal spirits.

Table 2 displays the second moments of the observables, both for actual data and its

model counterparts computed at the posterior mean. Our small scale model captures the

behavior of U.S. macroeconomic variables reasonably well. The model�s second moments

are for the most part consistent with the data. The model somewhat overpredicts the

volatilities of output and consumption and slightly underpredicts hours worked. One

outlier is investment for which the model strongly overpredicts its variance.17 Correlations

with output are well replicated. As a result of its rich internal propagation mechanism,

the arti�cial economy captures data�s autocorrelation functions remarkably even without

the myriad of real frictions often employed to generate such persistence.

15All estimations are done using Dynare (https://www.dynare.org). The posterior distributions are
based on 500,000 draws from two separate chains with a 25-30% acceptance rate for each chain.
16Results for the determinacy model are delegated to the Appendix.
17We ran an alternative estimation using endogenous priors that matches investment data better. It

is reported in the Appendix. The key results stay very much robust to these changes.
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Table 2: Business cycle dynamics
Data Model

x �x �(x; ln(Yt=Yt�1)) ACF �x �(x; ln(Yt=Yt�1)) ACF
ln(Yt=Yt�1) 0.58 1 0.29 0.81 1 0.51
ln(Ct=Ct�1) 0.47 0.67 0.38 0.62 0.49 0.46
ln(It=It�1) 1.66 0.79 0.62 3.13 0.84 0.63
ln(Gt=Gt�1) 0.77 0.25 0.24 0.85 0.09 0.06
ln(Ht=H) 6.16 0.20 0.99 5.34 0.12 0.99
spreadt 0.60 -0.58 0.85 0.59 -0.26 0.81

Business cycle statistics for the arti�cial economy are calculated at the posterior mean. �x
denotes the standard deviation of variable x, �(x; ln(Yt=Yt�1)) is the correlation of variable x
and output growth, and ACF is the �rst order autocorrelation coe¢ cient.

Table 3: Unconditional variance decomposition (in percent)

ln
�

Yt
Yt�1

�
ln
�

Ct
Ct�1

�
ln
�

Xt

Xt�1

�
ln
�

Gt

Gt�1

�
ln
�
Ht

H

�
spreadt

"st 11.36 0.39 18.00 0.00 2.69 0.00
"At 28.67 35.43 19.62 8.85 16.34 0.00
"zt 21.50 0.79 32.01 0.00 24.41 100
"�t 31.49 63.30 25.03 0.00 46.96 0.00
"gt 2.10 0.09 5.36 91.15 9.60 0.00
"m:e:t 4.89 0.00 0.00 0.00 0.00 0.00

Variance decompositions are performed at the posterior mean.

Table 3 displays the forecast error variance decompositions which reveal the relative

contribution of each of the six shocks to the macroeconomic aggregates. Shocks to tech-

nology and investment explain about half of U.S. business cycle �uctuations. The latter

shocks account for a large fraction of investment growth but, overall, investment shocks�

importance shrinks considerably when compared to Justiniano et al. (2011). The pref-

erence shock explains most of consumption, half of hours worked, and about a third of

output and investment. The e¤ect of animal spirits on the business cycle is non-trivial:

they drive a modest fraction of output and a sizeable portion of investment. Finally,

the government expenditure shock is a negligible source of business cycles. Overall, the

relative contributions of supply and demand disturbances to movements in output growth

are comparable at around 50 percent each.

4.3 Robustness

How robust are our results? We ran a battery of checks including i) employing the Bianchi

and Nicolò (2021) approach of solving and estimating linear rational expectations models

under indeterminacy, ii) assuming smaller markups for superstars and ordinary �rms,

iii) calibrating a lower market share of superstars, and iv) using endogenous priors as in

Christiano et al. (2011). All details of these variations to the estimation are delegated

to the Appendix. As you will see, the paper�s results regarding the estimates, second

19



Figure 5: Total factor productivity. Percentage deviations from HP-trend.

moments, and variance decompositions remain very much unchanged.

4.4 External validation

We identify shocks by estimating them in a system and it is thus fair to ask if the

estimated shocks are meaningfully labeled. As we estimate the model without employing

data on total factor productivity or animal spirits, we now externally validate estimated

shocks by comparing them to their empirical counterparts.

For total factor productivity, we consult Fernald�s (2014) series in its utilization ad-

justed form. To make the data comparable, we convert both series into level indices that

we then Hodrick-Prescott �lter to take out low frequency movements. Figure 5 reports

that the estimated series share resemblance with the empirical data and �nds a positive

correlation at 0:66. This result appears to con�rm our interpretation of the shocks.

We also compare the estimated animal spirits with the University of Michigan�s sen-

timent index. We construct a level-index from the smoothed estimates of animal spirits

shocks parallel to what we have done for total factor productivity.18 Figure 6 indicates

a mostly positive correlation of the two series at 0:42. To us, this pattern signals that

the estimated shocks can be meaningfully coined animal spirits, thus, describing people�s

extrinsic expectations and how these expectations alternate between euphoric and pes-

simistic states. This being said, the Michigan sentiment is a composite of extrinsic and

intrinsic parts and a less than perfect correlation is expected. Furthermore, the estimated

series appears to lead the Michigan index at upper business cycle turning points and both

indices begin to fall right before each of the three NBER recessions.

18The series are normalized to make them comparable. The Appendix features a parallel �gure using
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Figure 6: Sentiments and animal spirits. Normalized deviations from HP-trend.

5 Concluding remarks

The rise of market power in the last decades is primarily driven by the largest �rms

often coined superstars. This paper aspires to improve our understanding of the e¤ect

of these �rms on aggregate economic behavior. We propose a theory of these superstar

�rms in which their technology involves the ability to produce multiple products. This

ability allows them to charge higher prices, set larger markups and grab a larger market

share than ordinary �rms. Superstars�product creation and the resulting market share

reallocations generate heterogeneous markup dynamics across �rms. We plant this market

structure into a general equilibrium economy and �nd higher market shares of superstars

increase the parametric space for macroeconomic indeterminacy. This feature allows us to

explain the real e¤ects on aggregate �uctuations of extrinsic expectations in combination

with fundamental disturbances. A full-information Bayesian estimation of the general

equilibrium model reveals the importance of the endogenous ampli�cation of the product

creation channel associated with superstars. Through the lens of our theory, the relative

contributions of supply and demand disturbances to U.S. aggregate output �uctuations

are roughly the same. We �nd animal spirits play a non-trivial role in driving business

cycles.
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A Online appendix

This Appendix contains:

A.1 Data sources and construction

A.2 Derivation of the product scope

A.3 Indeterminacy with dynamic entry and exit of �rms

A.4 Determinacy version of the model and estimation results

A.5 Alternative external validation for expectations

A.6 Robustness checks of the Bayesian estimation

A.6.1 Bianchi and Nicolò (2021) method

A.6.2 Alternative markup calibrations

A.6.3 Alternative market share calibrations

A.6.4 Endogenous priors

A.1 Data sources and construction

This Appendix details the source and construction of the U.S. data used in Section 4.

All data is quarterly and for the period 1990:I-2019:IV.

1. Gross Domestic Product. Seasonally adjusted at annual rates, billions of chained

(2012) dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.6.

2. Gross Domestic Product. Seasonally adjusted at annual rates, billions of dollars.

Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

3. Personal Consumption Expenditures, Nondurable Goods. Seasonally adjusted at

annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

4. Personal Consumption Expenditures, Services. Seasonally adjusted at annual rates,

billions of dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

5. Personal Consumption Expenditures, Durable Goods. Seasonally adjusted at an-

nual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

6. Gross Private Domestic Investment, Fixed Investment, Residential. Seasonally

adjusted at annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA

Table 1.1.5.

7. Gross Private Domestic Investment, Fixed Investment, Nonresidential. Seasonally

adjusted at annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA

Table 1.1.5.
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8. Government consumption expenditures and gross investment. Seasonally adjusted

at annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA Table

1.1.5.

9. Nonfarm Business Hours. Index 2012=100, seasonally adjusted. Source: Bureau

of Labor Statistics, Series Id: PRS85006033.

10. Civilian Noninstitutional Population. 16 years and over, thousands. Source:

Bureau of Labor Statistics, Series Id: LNU00000000Q.

11. GDP De�ator = (2)=(1):

12. Real Per Capita Output, Yt = (1)=(10):

13. Real Per Capita Consumption, Ct = [(3) + (4)]=(11)=(10):

14. Real Per Capita Investment, Xt = [(5) + (6) + (7)]=(11)=(10):

15. Real Per Capita Government Expenditures, Gt = (8)=(11)=(10):

16. Per Capita Hours Worked, Ht = (9)=(10):

17. Moody�s Seasoned Baa Corporate Bond Yield [DBAA], retrieved from FRED,

Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/DBAA.

18. Market Yield on U.S. Treasury Securities at 30-Year Constant Maturity, Quoted

on an Investment Basis [DGS30], retrieved from FRED, Federal Reserve Bank of St.

Louis; https://fred.stlouisfed.org/series/DGS30.

19. Credit spread, (17)� (18).
20. Deviation from average credit spread, spreadt = (19)� average of (19):
21. University of Michigan. Consumer Sentiment [UMCSENT], retrieved from FRED,

Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/UMCSENT.

22. Total Factor Productivity. �A Quarterly Utilization-Adjusted Series on Total

Factor Productivity�, retrieved from https://www.johnfernald.net/TFP.

23. Organization for Economic Co-operation and Development, Business Tendency

Surveys (Manufacturing): Con�dence Indicators: Composite Indicators: OECD Indicator

for United States [BSCICP03USM665S], retrieved from FRED, Federal Reserve Bank of

St. Louis; https://fred.stlouisfed.org/series/BSCICP03USM665S.

A.2 Derivation of the product scope

This Appendix derives the �rm�s optimal product scope. It largely follows the approach

of Minniti and Turino (2013) and Pavlov and Weder (2017). Firm j maximizes pro�ts

with respect to S(j) and takes into account the e¤ect of its product scope on its own

prices, prices of other �rms, and the aggregate price index. First we rewrite pro�ts as

�(j) =

�
p(j)� �
p(j)

�
PY �(j)� �[S(j)�s + �m]
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and obtain the �rst-order condition

@�(j)

@S(j)
= �PY

�
p(j)� �
p(j)

�2
@�(j)

@S(j)
+ Y �(j)

�
p(j)� �
p(j)

�
@P

@S(j)
� ��s = 0:

Then
@�(j)

@S(j)
=
�(j)

S(j)
� (� � 1)�(j)

�
1

p(j)

@p(j)

@S(j)
� 1

P

@P

@S(j)

�
and for other multi-product �rms

@�(k)

@S(j)
= �(� � 1)�(k)

�
1

p(k)

@p(k)

@S(j)
� 1

P

@P

@S(j)

�
and ordinary �rms

@�(i)

@S(j)
= �(� � 1)�(i)

�
1

p(i)

@p(i)

@S(j)
� 1

P

@P

@S(j)

�
:

Next, rewrite the aggregate price index as

P =

 
NX
i=1

p(i)1��di+
MX
k=1

S(k)p(k)1��

! 1
1��

:

From here, we use symmetry to simplify. After some algebra, @P=@S(j) can be expressed

as
@P

@S(j)
= N

�n
pn

@p(i)

@S(j)
+
�m
pm

�
(M � 1)@p(k)

@S(j)
+
@p(j)

@S(j)

�
+

1

1� �

�m
S

where
@p(i)

@S(j)
= ��(� � 1)(�n � 1)(1� 1=�n)�n

�
@p(i)

@S(j)
� pn

@P

@S(j)

�
@p(k)

@S(j)
= ��(� � 1)(�m � 1)(1� 1=�m)�m

�
@p(k)

@S(j)
� pm

@P

@S(j)

�
@p(j)

@S(j)
= �(�m � 1)(1� 1=�m)

�
pm
�m
S
� (� � 1)�m

�
@p(j)

@S(j)
� pm

@P

@S(j)

��
:

Putting all these together, it can then be shown that @P
@S(j)

< 0, @p(k)
@S(j)

< 0; @p(i)
@S(j)

< 0,
@p(j)
@S(j)

> 0; @�(k)
@S(j)

< 0; @�(i)
@S(j)

< 0; and @�(j)
@S(j)

> 0: Finally, @�(j)
@S(j)

; @P
@S(j)

; and @p(j)
@S(j)

can be

substituted in the �rst-order condition @�(j)
@S(j)

= 0 to �nd the product scope

S = f(�m; �n; N;M; �)
Y

�spm

where f

f =

�m(�m�1)2�
�m

�
�2m(�m�1)

0@1+ (�m�1)�(��1)

�m

�
1+

�m(�m�1)2�(��1)
�m

�
1A

(��1)
h
1+�mM

�
�m

�m+�m(�m�1)2�(��1)�1
�
+�nN

�
�n

�n+�n(�n�1)2�(��1)
�1
�i�

1 + �m(�m�1)2�(��1)
�m

�
and �m = 1� �m

�m�1
1
�
and �n = 1� �n

�n�1
1
�
:
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A.3 Indeterminacy with dynamic entry and exit of �rms

This Appendix presents the version of the model where the entry of ordinary �rms is

dynamic as in Bilbiie et al. (2012) and shows that indeterminacy remains. A prospective

entrant i computes its expected value

vt(i) = Et

1X
l=1

Qt;l�n;t+l(i)

where Qt;l is the stochastic discount factor and �n;t(i) denotes pro�ts of ordinary �rms.

There is a time-to-build lag in that period t entrants begin operating in period t+1 and

the number of �rms evolves according to

Nt = (1� �n)(Nt�1 +NE;t�1)

where �n is the exogenous exit probability and NE;t is the number of entrants. Entry

occurs until the expected value, vt(i); is equal to the sunk cost of entry. To enter, fE
amount of labor needs to be hired and since labor is paid the real wage wt; this sunk cost

is equal to

vt(i) = wtfE:

The production function for new �rms is thus

NE;t =
HE;t

fE

where HE;t is the amount of labor hired for the production of new �rms. In a symmetric

equilibrium, a representative household enters period t with mutual fund share holdings

xt and has the budget constraint

Ct + It + vt(Nt +NE;t)xt+1 = (�n;t + vt)Ntxt + wtHt + rtUtKt +M�m;t

where �m;t are pro�ts from a constant number of superstar �rms and Ht = HE;t+Hn;t+

Hm;t. The Euler equation for share holding is then

vt = Et�(1� �n)
Ct
Ct+1

(�n;t+1 + vt+1):

Imposing the equilibrium condition xt+1 = xt = 1 for all t gives

Ct + It + vtNE;t = �n;tNt + wtHt + rtUtKt +M�m;t � Yt

where Yt is GDP consisting of consumption, investment in capital, and investment in new

�rms. Total investment is then

Xt � It + vtNE;t
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Figure A1: Indeterminacy with dynamic entry.

and the CES aggregator is now

Yg;t � Ct + It =

 
NtX
i=1

xt(i)
��1
� +

MX
j=1

Yt(j)
��1
�

! �
��1

:

Small �rms no longer have �rm-level �xed costs and the symmetric equilibrium goods

production is then

Yg;t =
pn;tU

�
t K

�
n;tH

1��
n;t

Nt�n;t
=
pm;tU

�
t K

�
m;tH

1��
m;t � pm;tMSt�s � pm;tM�m

M�m;t
:

We calibrate the model as in Section 3 and additionally set �n = 0:025 as in Bilbiie et

al (2012). Analogous to Figure 3, Figure A1 plots the feasible parameter zones where

superstar �rms can exist. The indeterminacy region largely remains but the lighter zone

on the right side indicates an unstable equilibrium (a source) where markups are not

su¢ ciently di¤erent. The lighter zone on the left representing determinacy remains.
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A.4 Determinacy version of the model and estimation results

Table A1 presents the prior and posterior distributions of the estimated determinate

version of the model. The main di¤erence here is that the animal spirits shock is no longer

available and in order to keep the number of shocks equal to observables, we introduce a

temporary technology shock, ATt , that a¤ects all �rms equally with persistence  T and

variance �T : For example, the output of an ordinary �rm is now

xt(i) = ATt �t(i)
� [Atht(i)]

1�� � �n;t

where

lnATt = (1�  T ) lnA
T +  T lnA

T
t�1 + "Tt :

Comparing the log-data densities between Tables 1 and A1, and the posteriors of �, data

clearly favors the indeterminate model with a strong product creation mechanism.

Table A1: Prior and posterior distributions (determinacy model)
Prior Posterior

Name Range Density Mean Std. Dev. Mean 90% Interval
� R+ Normal 0.085 0.05 0.01 [0.00,0.02]
b [0,1) Beta 0.5 0.1 0.40 [0.33,0.47]
 T [0,1) Beta 0.5 0.2 0.90 [0.87,0.92]
 A [0,1) Beta 0.5 0.2 0.06 [0.04,0.08]
 z [0,1) Beta 0.5 0.2 0.96 [0.91,0.99]
 � [0,1) Beta 0.5 0.2 0.99 [0.98,0.99]
 g [0,1) Beta 0.5 0.2 0.98 [0.97,0.99]
 ag [0,1) Beta 0.5 0.2 0.99 [0.99,0.99]
�T R+ Inverse Gamma 0.1 Inf 0.11 [0.09,0.13]
�A R+ Inverse Gamma 0.1 Inf 0.78 [0.69,0.86]
�z R+ Inverse Gamma 0.1 Inf 0.03 [0.02,0.04]
�� R+ Inverse Gamma 0.1 Inf 0.79 [0.69,0.88]
�g R+ Inverse Gamma 0.1 Inf 0.79 [0.69,0.88]
�m:e: [0; 0:18] Uniform 0.09 0.05 0.18 [0.18,0.18]
{ [-20,0] Uniform -10 5.77 -13.06 [-17.89,-8.27]

This table presents the prior and posterior distributions for model parameters and shocks of
the determinate model. Log-data density (modi�ed harmonic mean): -914.59.
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A.5 Alternative external validation for expectations

Figure A2 repeats the external validation of the expectational shocks comparing them to

the Business Tendency Surveys (Manufacturing). The plotted data has been constructed

as in the main part of the paper. The two series continue to co-move but to a lesser

degree.

Figure A2: Business Tendency Surveys and animal
spirits. Normalized deviations from HP-trend.
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A.6 Robustness checks of the Bayesian estimation

A.6.1 Bianchi and Nicolò (2021) method

Bianchi and Nicolò (2021) develop a new method to solve and estimate linear rational ex-

pectations (LRE) models under indeterminacy. Their characterization of indeterminate

equilibria is equivalent to Lubik and Schorfheide (2003) and Farmer et al. (2015). We

closely follow Bianchi and Nicolò (2021) and in the following brie�y sketch their method-

ology while referring the readers to their paper for detailed exposition. Following Bianchi

and Nicolò (2021), we append the following autoregressive process to the original LRE

model

!t = '�!t�1 + "st � �t

in which "st is the animal spirit shock as before and �t can be any element of the forecast

error vector. As in our baseline analysis, we include the forecast error associated with

(data-consistent) output �t = bY d
t � Et�1bY d

t without any loss of generality or robustness

of the results. The main insight of the Bianchi and Nicolò (2021) approach consists

of choosing this auxiliary process in a way that delivers the �correct� solution. When

the original model is indeterminate, the auxiliary process must be explosive so that the

augmented representation satis�es the Blanchard-Kahn condition, although it does not

for the original model. Accordingly, we set '� such that its absolute value is outside the

unit circle. As before, we estimate the standard deviation of the animal spirit shock, �s.

In addition, the animal spirit shock is potentially related to the structural shocks of the

model and we capture this association by estimating the correlation between the non-

fundamental and fundamental shocks using a uniform prior distribution over the interval

[�1; 1]. The resulting model is estimated using Bayesian techniques as in the baseline
analysis. Table A2 reports the parameter estimates. The parameter estimates turn out

to be quite similar to the baseline results, except for the standard deviation of the animal

spirit shock which now turns out to be higher than before and the correlations of the

animal spirit shock with the fundamental shocks which appear only in the Bianchi-Nicolò

method.19 Nevertheless, as Tables A3 and A4 show, the second moments and forecast

error variance decompositions are virtually indistinguishable from our baseline results.

19The higher standard deviation of the animal spirit shock is driven by the alternative way of intro-
ducing non-fundamental shocks in the estimation under the Bianchi-Nicolò method.
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Table A2: Prior and posterior distributions (Bianchi-Nicolò method)
Prior Posterior

Name Range Density Mean Std. Dev. Mean 90% Interval
� R+ Normal 0.085 0.05 0.20 [0.16,0.23]
b [0,1) Beta 0.5 0.1 0.49 [0.41,0.58]
 A [0,1) Beta 0.5 0.2 0.00 [0.00,0.01]
 z [0,1) Beta 0.5 0.2 0.82 [0.75,0.89]
 � [0,1) Beta 0.5 0.2 0.96 [0.94,0.98]
 g [0,1) Beta 0.5 0.2 0.99 [0.98,0.99]
 ag [0,1) Beta 0.5 0.2 0.75 [0.58,1.00]
�s R+ Inverse Gamma 0.1 Inf 0.53 [0.48,0.58]
�A R+ Inverse Gamma 0.1 Inf 0.67 [0.60,0.74]
�z R+ Inverse Gamma 0.1 Inf 0.08 [0.04,0.11]
�� R+ Inverse Gamma 0.1 Inf 0.90 [0.75,1.06]
�g R+ Inverse Gamma 0.1 Inf 0.81 [0.72,0.89]
�m:e: [0; 0:18] Uniform 0.09 0.05 0.18 [0.18,0.18]
�s;A [-1,1] Uniform 0 0.58 -0.58 [-0.70,-0.49]
�s;z [-1,1] Uniform 0 0.58 0.22 [0.14,0.32]
�s;� [-1,1] Uniform 0 0.58 0.58 [0.45,0.70]
�s;g [-1,1] Uniform 0 0.58 0.07 [-0.05,0.19]
{ [-20,0] Uniform -10 5.77 -4.68 [-6.93,-2.28]

Table A3: Business cycle dynamics (Bianchi-Nicolò method)
Data Model

x �x �(x; ln(Yt=Yt�1)) ACF �x �(x; ln(Yt=Yt�1)) ACF
ln(Yt=Yt�1) 0.58 1 0.29 0.82 1 0.51
ln(Ct=Ct�1) 0.47 0.67 0.38 0.62 0.47 0.47
ln(It=It�1) 1.66 0.79 0.62 3.21 0.84 0.63
ln(Gt=Gt�1) 0.77 0.25 0.24 0.85 0.08 0.06
ln(Ht=H) 6.16 0.20 0.99 5.39 0.13 0.99
spreadt 0.60 -0.58 0.85 0.61 -0.26 0.82

Table A4: Unconditional variance decomposition (Bianchi-Nicolò method)

ln
�

Yt
Yt�1

�
ln
�

Ct
Ct�1

�
ln
�

Xt

Xt�1

�
ln
�

Gt

Gt�1

�
ln
�
Ht

H

�
spreadt

"st 12.35 0.44 19.01 0.00 2.89 0.00
"At 28.32 34.84 19.05 9.10 15.64 0.00
"zt 22.60 0.87 32.72 0.00 25.83 100
"�t 29.86 63.75 23.90 0.00 45.91 0.00
"gt 2.07 0.09 5.32 90.90 9.73 0.00
"m:e:t 4.79 0.00 0.00 0.00 0.00 0.00
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A.6.2 Alternative markup calibrations

Tables A5-A7 show the estimation results with a lower markup calibration of �m = 1:5

and �n = 1:2. Once again, we calibrate the elasticity of substitution to the midpoint of

its permissible values, this time at � = 6:8. All priors remain the same. It can be seen

that the estimated parameters, second moments, and variance decompositions change

very little relative to our baseline results.

Table A5: Prior and posterior distributions (Alternative markup calibration)
Prior Posterior

Name Range Density Mean Std. Dev. Mean 90% Interval
� R+ Normal 0.085 0.05 0.21 [0.18,0.24]
b [0,1) Beta 0.5 0.1 0.45 [0.37,0.53]
 A [0,1) Beta 0.5 0.2 0.00 [0.00,0.01]
 z [0,1) Beta 0.5 0.2 0.82 [0.76,0.88]
 � [0,1) Beta 0.5 0.2 0.97 [0.96,0.99]
 g [0,1) Beta 0.5 0.2 0.99 [0.99,0.99]
 ag [0,1) Beta 0.5 0.2 0.70 [0.52,0.89]
�s R+ Inverse Gamma 0.1 Inf 0.24 [0.21,0.27]
�A R+ Inverse Gamma 0.1 Inf 0.61 [0.55,0.68]
�z R+ Inverse Gamma 0.1 Inf 0.06 [0.04,0.09]
�� R+ Inverse Gamma 0.1 Inf 0.79 [0.66,0.92]
�g R+ Inverse Gamma 0.1 Inf 0.79 [0.70,0.87]
�m:e: [0; 0:18] Uniform 0.09 0.05 0.18 [0.18,0.18]

A [-3,3] Uniform 0 1.73 -0.44 [-0.53,-0.35]

z [-3,3] Uniform 0 1.73 2.05 [1.32,2.99]

� [-3,3] Uniform 0 1.73 0.37 [0.27,0.46]

g [-3,3] Uniform 0 1.73 0.02 [-0.04,0.08]
{ [-20,0] Uniform -10 5.77 -5.27 [-7.39,-3.11]

Table A6: Business cycle dynamics (Alternative markup calibration)
Data Model

x �x �(x; ln(Yt=Yt�1)) ACF �x �(x; ln(Yt=Yt�1)) ACF
ln(Yt=Yt�1) 0.58 1 0.29 0.87 1 0.61
ln(Ct=Ct�1) 0.47 0.67 0.38 0.58 0.39 0.45
ln(It=It�1) 1.66 0.79 0.62 3.56 0.87 0.72
ln(Gt=Gt�1) 0.77 0.25 0.24 0.83 0.05 0.06
ln(Ht=H) 6.16 0.20 0.99 6.84 0.13 0.99
spreadt 0.60 -0.58 0.85 0.59 -0.25 0.82
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Table A7: Unconditional variance decomposition (Alternative markup calibration)

ln
�

Yt
Yt�1

�
ln
�

Ct
Ct�1

�
ln
�

Xt

Xt�1

�
ln
�

Gt

Gt�1

�
ln
�
Ht

H

�
spreadt

"st 9.48 0.54 13.47 0.00 2.48 0.00
"At 26.60 37.09 18.73 9.49 14.85 0.00
"zt 25.37 1.50 34.28 0.00 26.44 100
"�t 31.30 60.66 26.71 0.00 47.00 0.00
"gt 2.96 0.21 6.81 90.51 9.22 0.00
"m:e:t 4.30 0.00 0.00 0.00 0.00 0.00

A.6.3 Alternative market share calibrations

Tables A8-A10 have the same markup calibration from Section 4 but a lower market share

of superstars at 50 percent. The midpoint of the permissible values for the elasticity of

substitution is now at � = 4:4. Again, it can be seen that our results remain robust to

this change.

Table A8: Prior and posterior distributions (Lower market share of superstars)
Prior Posterior

Name Range Density Mean Std. Dev. Mean 90% Interval
� R+ Normal 0.085 0.05 0.20 [0.17,0.22]
b [0,1) Beta 0.5 0.1 0.47 [0.39,0.55]
 A [0,1) Beta 0.5 0.2 0.00 [0.00,0.01]
 z [0,1) Beta 0.5 0.2 0.82 [0.76,0.88]
 � [0,1) Beta 0.5 0.2 0.97 [0.95,0.99]
 g [0,1) Beta 0.5 0.2 0.99 [0.98,0.99]
 ag [0,1) Beta 0.5 0.2 0.72 [0.54,0.90]
�s R+ Inverse Gamma 0.1 Inf 0.24 [0.21,0.27]
�A R+ Inverse Gamma 0.1 Inf 0.64 [0.57,0.70]
�z R+ Inverse Gamma 0.1 Inf 0.06 [0.04,0.09]
�� R+ Inverse Gamma 0.1 Inf 0.84 [0.70,0.98]
�g R+ Inverse Gamma 0.1 Inf 0.80 [0.71,0.88]
�m:e: [0; 0:18] Uniform 0.09 0.05 0.18 [0.18,0.18]

A [-3,3] Uniform 0 1.73 -0.45 [-0.54,-0.35]

z [-3,3] Uniform 0 1.73 2.00 [1.25,2.97]

� [-3,3] Uniform 0 1.73 0.36 [0.26,0.45]

g [-3,3] Uniform 0 1.73 0.04 [-0.03,0.10]
{ [-20,0] Uniform -10 5.77 -5.48 [-7.72,-3.01]
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Table A9: Business cycle dynamics (Lower market share of superstars)
Data Model

x �x �(x; ln(Yt=Yt�1)) ACF �x �(x; ln(Yt=Yt�1)) ACF
ln(Yt=Yt�1) 0.58 1 0.29 0.84 1 0.56
ln(Ct=Ct�1) 0.47 0.67 0.38 0.60 0.44 0.45
ln(It=It�1) 1.66 0.79 0.62 3.34 0.86 0.68
ln(Gt=Gt�1) 0.77 0.25 0.24 0.84 0.07 0.07
ln(Ht=H) 6.16 0.20 0.99 5.88 0.12 0.99
spreadt 0.60 -0.58 0.85 0.60 -0.24 0.82

Table A10: Unconditional variance decomposition (Lower market share of superstars)

ln
�

Yt
Yt�1

�
ln
�

Ct
Ct�1

�
ln
�

Xt

Xt�1

�
ln
�

Gt

Gt�1

�
ln
�
Ht

H

�
spreadt

"st 10.05 0.46 15.13 0.00 2.36 0.00
"At 28.47 36.30 19.88 9.53 15.50 0.00
"zt 22.69 1.07 32.47 0.00 23.81 100
"�t 31.64 62.03 26.31 0.00 48.39 0.00
"gt 2.55 0.14 6.20 90.47 9.94 0.00
"m:e:t 4.60 0.00 0.00 0.00 0.00 0.00

A.6.4 Endogenous priors

Tables A11-A13 show the estimation results under endogenous priors (Christiano et al.

2011). It can be seen that our main results remain robust while the standard deviation

of output, government spending, and investment drop to better match U.S. data.
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Table A11: Prior and posterior distributions (Endogenous priors)
Prior Posterior

Name Range Density Mean Std. Dev. Mean 90% Interval
� R+ Normal 0.085 0.05 0.19 [0.16,0.22]
b [0,1) Beta 0.5 0.1 0.29 [0.24,0.35]
 A [0,1) Beta 0.5 0.2 0.00 [0.00,0.01]
 z [0,1) Beta 0.5 0.2 0.93 [0.91,0.95]
 � [0,1) Beta 0.5 0.2 0.98 [0.97,0.99]
 g [0,1) Beta 0.5 0.2 0.99 [0.99,0.99]
 ag [0,1) Beta 0.5 0.2 0.95 [0.84,0.99]
�s R+ Inverse Gamma 0.1 Inf 0.23 [0.21,0.26]
�A R+ Inverse Gamma 0.1 Inf 0.65 [0.59,0.71]
�z R+ Inverse Gamma 0.1 Inf 0.09 [0.05,0.12]
�� R+ Inverse Gamma 0.1 Inf 0.70 [0.63,0.77]
�g R+ Inverse Gamma 0.1 Inf 0.75 [0.70,0.81]
�m:e: [0; 0:18] Uniform 0.09 0.05 0.18 [0.18,0.18]

A [-3,3] Uniform 0 1.73 -0.44 [-0.52,-0.37]

z [-3,3] Uniform 0 1.73 0.97 [0.43,1.52]

� [-3,3] Uniform 0 1.73 0.57 [0.50,0.64]

g [-3,3] Uniform 0 1.73 0.13 [0.07,0.18]
{ [-20,0] Uniform -10 5.77 -4.04 [-5.92,-1.99]

Table A12: Business cycle dynamics (Endogenous priors)
Data Model

x �x �(x; ln(Yt=Yt�1)) ACF �x �(x; ln(Yt=Yt�1)) ACF
ln(Yt=Yt�1) 0.58 1 0.29 0.75 1 0.34
ln(Ct=Ct�1) 0.47 0.67 0.38 0.65 0.68 0.30
ln(It=It�1) 1.66 0.79 0.62 2.39 0.81 0.56
ln(Gt=Gt�1) 0.77 0.25 0.24 0.76 0.14 0.02
ln(Ht=H) 6.16 0.20 0.99 4.71 0.10 0.99
spreadt 0.60 -0.58 0.85 0.98 -0.09 0.93

Table A13: Unconditional variance decomposition (Endogenous priors)

ln
�

Yt
Yt�1

�
ln
�

Ct
Ct�1

�
ln
�

Xt

Xt�1

�
ln
�

Gt

Gt�1

�
ln
�
Ht

H

�
spreadt

"st 10.92 0.20 24.91 0.00 2.81 0.00
"At 29.54 44.45 17.61 1.91 9.54 0.00
"zt 12.46 0.38 26.57 0.00 19.59 100
"�t 38.33 54.91 27.00 0.00 56.16 0.00
"gt 3.08 0.07 3.91 98.09 11.90 0.00
"m:e:t 5.67 0.00 0.00 0.00 0.00 0.00
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