
Tasmanian School of Business and Economics 
University of Tasmania 

 

 

Discussion Paper Series N 2020-11 

 

 

Realized Volatility, Jump and Beta: Evidence 
from Canadian Stock Market 

 

Dinesh Gajurel 

University of New Brunswick, Canada 

 

Biplob Chowdhury 

University of Tasmania, Australia 

 

 

 

 

 

 

 

 

 

ISBN 978-1-922352-74-3 



Realized Volatility, Jump and Beta: Evidence from

Canadian Stock Market*

Dinesh Gajurel†and Biplob Chowdhury‡

August, 2020

Abstract

Inclusion of jump component in the price process has been a long debate in �nance lit-

erature. In this paper, we identify and characterize jump risks in the Canadian stock market

using high-frequency data from the Toronto Stock Exchange. Our results provide a strong

evidence of jump clustering - about 90% of jumps occur within �rst 30 minutes of market

opening for trade, and about 55% of jumps are due to the overnight returns. While aver-

age intraday jump is negative, jumps induced by overnight returns bring a cancellation e�ect

yielding average size of the jumps to zero. We show that the economic signi�cance of jump

component in volatility forecasting is very nominal. Our results further demonstrate that

market jumps and overnight returns bring signi�cant changes in systematic risk (beta) of

stocks. While the average e�ect of market jumps on beta is not signi�cantly di�erent than

zero, the e�ect of overnight returns on beta is signi�cant. Overall, our results suggest that

jump risk is non-systematic in nature.
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1 Introduction

Inclusion of jump component in the price process has been a long debate in �nance literature.

Early pioneer works in �nance theories such as option pricing models do not consider the jump

component (Black and Scholes, 1973; Merton, 1973). In his seminal paper, Merton (1976) sug-

gests importance of inclusion of jump in a stochastic price process but indicates that jump risks

of individual stocks are non-systematic. If jump risks are non-systematic or idiosyncratic then it

may not be important because only the systematic risk should be priced (Lintner, 1965; Mossin,

1966; Sharpe, 1964). However recent literature, both theoretical and empirical, advocate for in-

cluding a jump component in the stochastic price process. The advancement in �nancial econo-

metrics over last decade and availability of high frequency (tick) data now allow us to test many

continuous time models with nearly equivalent discrete time data enriching our understanding

of stock price process and the risk-return relationship (Eraker et al., 2003; Jacod and Todorov,

2009; Huang and Tauchen, 2005). The empirical literature provides strong evidences of presence

of jumps in �nancial assets/markets (Alexeev et al., 2017; Bollerslev et al., 2016; Lahaye et al.,

2011; Todorov and Bollerslev, 2010). Andersen et al. (2007), Corsi et al. (2010) and Vortelinos and

Thomakos (2012) suggest that accounting for jump in realized volatility modeling and forecasting

using high-frequency data is important. Eraker et al. (2003) and Bollerslev et al. (2016) provide

further evidence of signi�cant risk premia for the jump component (Bollerslev et al., 2016; Er-

aker et al., 2003). Bollerslev et al. (2016), Alexeev et al. (2017) and Alexeev et al. (2019) report that

individual stocks respond di�erently to the market jumps than the continuous counterparts sug-

gesting di�erent systematic risk dynamics attributed to the market jumps. Gajurel et al. (2020)

further show that systemic risk and systematic jump risk are related.

While understanding jump risk in equity price process is important for examining risk-return

relationship and volatility modeling, the empirical evidences are still inconclusive. Therefore it is

remained an empirical question to characterize jump risk. In this paper, we provide new insights

to these issues by introducing a simple yet robust econometric framework to assess the jump risk.

To date, most prior research on high-frequency �nance has been done in the U.S. �nancial market.

To what extent those �ndings, and explanations o�ered in the U.S. equity market hold in other
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international markets have been largely unexplored. In this paper, we �ll this gap by examining

the realized volatlity, market jumps in the Canadian equity market and the systematic risk of

Canadian �rms in the 2003-2015 period. We have fourmain quesitons: (i) Do jump charecteristics

of Canadian stock market di�er from the US equity market? (ii) How sensetive are the overnight

returns in jump detection in the equity price process? (iii) Does decomposed realized volatlity

into continious (bipower variation) and jump compoenents improve volatility forecasting, and if

so, to what extent? (iv) Does the market jumps bring changes in the systematic risk of individual

�rms, and if so, to what extent jump risk matters?

Using Lee and Mykland (2007), hereafter LM, jump detection methodology, we �rst identify

jumps in the key equity indices from the Toronto Stock Exchange (TSX) and characterize the jump

risk. Speci�cally, we show the importance of overnight returns while assessing jump intensities.

We then model for the potential gains from explicitly utilizing the jump component and leverage

e�ect in volatility modeling. Finally, we examine the e�ect of market jumps and overnight re-

turns in the systematic risk of individual stocks. Therefore, our paper sheds the �rst light on the

statistical identi�cation and numerical characterization of jump dynamics in Canadian equities.

Our results reveal thatCanadian stockmarket experiences signi�cant price discontinues (jumps)

and average jump arrival rate is about 0.17 jumps per day. We �nd that about 55% of jumps are due

to the overnight returns and about 90% of jumps occur within 30 minutes of the market opening

for trading – providing a strong evidence of jump clustering. While looking at the jump intensi-

ties, our results show an asymmetric distribution of positive versus negative jumps for intraday

returns but such asymmetry disappears when we include overnight returns in our analysis. Berk-

man et al. (2012) and Lou et al. (2018) suggest that institutional investors tend to trade relatively

more during the day and individual investors trade relatively more overnight. Such di�erences in

jump charecteristics in intraday versus overnight returns potentially re�ecting the corresponding

clientele e�ects. Therefore, it is important to incorporate overnight returns in jump risk analysis.1

In our paper, we further show that although the e�ect of jump component in volatility fore-

casting is statistically signi�cant, its economic signi�cance is very nominal - large portion of re-

alized volatility is coming from the continuous component. When we examine e�ect of market
1Many papers exludes overnight returns in jump risk analysis such as in Alexeev et al. (2017), and Zhou and Zhu

(2012).
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jumps on the systematic risk (beta) of the stocks, we �nd a strong evidence of signi�cant changes

in the beta of individual stocks, however, the directions of changes are both ways. Stocks respond

aggressively to the overnightmarket returns leading to a signi�cant increase in the systematic risk.

Our results for jump beta are in sharp contrast to the prior empirical research that reports consis-

tently higher jump risk response (jump beta) of individual stocks (Alexeev et al., 2017; Bollerslev

et al., 2016). Theoretically, average changes in individual stock’s beta due to market jumps should

be zero because as market jumps do not bring changes in continious beta, the changes should be

re�ected in the jump beta in a way that the beta of overall market portfolio should remain to 1.

However that is not the case for overnight beta. The contradictive �ndings on jump beta could

be attributed to the parametric versus non-parametric approches of disentangling the systematic

risk. While we follow a simple yet robust parametric apparoch, Bollerslev et al. (2016) and Alexeev

et al. (2017) use non-parametric appraoch of Todorov and Bollerslev (2010).2

The remainder of the paper is organized as follows. In Second 2, we provide empirical frame-

work and includes Lee and Mykland (2007) approach to jump detection, HAR type of model of

Corsi (2009) for volatility modeling, and an econometric framework to measure systematic risk

including jump beta and overnight beta. Sample and data are explained in Section 3. The results

are provided in Section 4, and Section 5 concludes the paper.

2 Empirical Framework

2.1 Identifying Jumps

One of the key advances in high frequency econometrics over the last decade is the development

of test proceduresfor the presence of jumps in the equity price process during a certain time

interval, say in a given day or at certain point of time within a given day. Dumitru and Urga

(2012) state that there are nine di�erent jump test procedures.3 All the jump tests rely on Centre

Limit Theorem-type results based on intraday sampling frequency. The test statistics are based

on realized variance and some measures of quadratic variation which are robust to jumps in the
2See Todorov and Bollerslev (2010) for details on non-parametric approach.
3See Dumitru and Urga (2012) for detail review of nonparametric jump tests.
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price processes. Since we are interested in identifying exact time of a jump as well as a number of

jumps within a trading day, Lee and Mykland (2007) apparoch is �exible to this end. In addition,

Dumitru and Urga (2012) show that LM apparoch performs best among all other approaches.

Here we brie�y describe the jump detection methodology advanced by Lee and Mykland (2007).

The log-price (pt) process of an asset at time t can be represented by a stochastic di�erential

equation as follows

dpt = ↵tdt+ �tdWt + tdJt, (1)

where ↵t is the time-varying drift of price process, �t is the time-varying volatility component,

Wt is standard Brownian motion, Jt is the pure jump process and t is the magnitude of jump at

time t. The counting process dJt = 1 if there is a jump at time t, otherwise 0.

Indra-day returns are de�ned as follows:

rt,s = pt,s.� � pt,(s�1).� (2)

where rt,s refers to sth intra-day return on day t and � is the sampling frequency within each day

and 0 < s < t. The sampling frequency is such that s < t. For example, � may refer to 15

minutes.

Barndor�-Nielsen and Shephard (2006) propose twomeasures for the quadratic variation pro-

cess - realized variance (RV ) and bi-power variation (BV ) which converge uniformly as � ! 0

or s = 1/� ! 1 to di�erent measures of the underlying jump-di�usion process,

RVt ⌘
nX

s=1

r2
t,s

!
ˆ

t

t�1

�2
s
ds+

ˆ
t

t�1

2
s
dJs, (3)

BVt ⌘ µ�2
1

nX

s=1

|rt,s||rt,(s�1)| !
ˆ

t

t�1

�2
s
ds, (4)

where µ1 ⌘
p
2/⇡ = E(|Z|) denotes the mean of the absolute value of a standard normal

random variable Z (Andersen et al., 2001, 2002, 2007).

SinceRV is inconsistent in the presence of jumps in a return process,BV has been suggested

and shown to be a consistent estimator for the integrated volatility, even when there are jumps in
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return processes (Barndor�-Nielsen and Shephard, 2006). The�rst step in applying LMprocedure

is to use BV to standardize the intraday returns at ts as follows:

zt,s = |rs|/
p

Vs (5)

where Vs = BVt,s/K � 2 with K the estimation window size on which BVt,s is calculated. The

choice of estimation window size, K , depends on the sampling frequency. Lee and Mykland

(2007) suggest to takeK =
p
252.n where n is the number of observations per day.

Now given that zt,s is asymptotically normal, jumps can be identi�ed by comparing zt,s with

the normal distribution thresholds. Since the standard thresholds prove too permissive, LM pro-

pose using critical values from the limit distribution of the maximum of the test statistics and

show that this maximum converges, for � ! 0, to a Gumbel variable:

(max(zt)� Cn)/Sn ! ⇠, P (⇠) = exp(�e�x), (6)

Cn =

s
2log(n)

2/⇡
� log(⇡) + log(log(n))p

(4/⇡)(2log(n))
, (7)

Sn =
1p

(2/⇡)(2log(n))
. (8)

Therefore, the threshold value for (|zt|� Cn)/Sn is �⇤. Since P (⇠  �⇤) = exp(�e��
⇤
) , at

the 1 percent level of signi�cance �⇤ = �log(�log(0.99)) = 4.6001. If (|zt|�Cn)/Sn is greater

than 4.6001, we reject the null hypothesis of no jumps at time t, s.

2.2 Modeling Realized Volatility

Since volatility is very important for asset pricing, portfolio and riskmanagement (Andersen et al.,

2002, 2007; Das and Uppal, 2004; Eraker et al., 2003; Merton, 1973), we capitalize the volatility

measures based on high-frequency data for modeling realized volatilities. In this paper, we use

Heterogeneous Autoregressive model of Realized Volatility (HAR-RV) proposed by Corsi (2009)

and its variants to model realized volatilities. The main advantage of the HAR-RV class of mod-
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els is that it is very simple and �exible yet incorporates some of the stylized tenets of �nancial

time series such as multiscaling and long memory (Corsi and Reno, 2012). Andersen et al. (2004)

also suggest that simple models of realized volatility outperform the GARCH type and related

stochastic volatility models in out-of-sample forecasting.

The HAR-RV class of model is based on so-called “Heterogenous Market Hypothesis” pre-

sented by Corsi (2009) and a multi-component volatility model with an additive hierarchical

structure of realized volatility (Muller et al., 1997). The basic idea is that investors with di�erent

investment time horizons may perceive and respond to di�erent types of volatility components.

The daily HAR-RV model can be expressed as:

RVt+1 = ↵ + �DRVD,t + �WRVW,t + �MRVM,t + "t+1 (9)

whereRVD,t refers to dailymeasure of realized volatility as speci�ed in Eq. (3)RVW is the average

of daily RV from day t� 4 to day t andRVM is the average of daily RV from day t� 21 to day t.

The Eq. (9) be easily extended to h = 1, 2, ..., T days ahead forecast:

RVt,t+h = ↵ + �DRVD,t + �WRVW,t + �MRVM,t + "t,t+h. (10)

For simplicity, we refer these h = 1 , h = 5 and h = 22 as daily, weekly, and monthly volatilities,

respectively.

Considering the importance of jump component in volatility modeling, Andersen et al. (2007)

extend HAR-RV model of Corsi (2009) to HAR-RV-J model by including the jump component in

the right-hand side of Eq. (10) as follows:

RVt,t+h = ↵ + �DRVt + �WRVW,t + �MRVM,t + �JJt + "t,t+h (11)

where Jt = Max[RVt � BVt, 0].

Andersen et al. (2007)demonstrate important gains in terms of volatility forecast accuracy by

explicitly di�erentiating the jump and continuous sample path components of realized volatilities

7



in the model. The extended HAR-RV-CJ model is

RVt,t+h = �0 + �CDBVD + �CWBVW,t + �CMBVM,t + �JDJD + �JWJW,t + �JMJM,t + "t,t+h

(12)

where the variables in the right-hand side of the model are daily, weekly and monthly average of

bipower variation and jump components respectively.

Furthermore, Corsi and Reno (2012) suggest that accommodating leverage e�ect in HAR-RV

class of models is very important. Therefore, by capturing the leverage e�ects in Eq. (11)and Eq.

(12)we express respective Leverage Heterogeneous Auto-Regressive (LHAR) models as follows:

RVt,t+h = ↵ + �DRVt + �WRVW,t + �MRVM,t + �JJt + �rt ⇤ I[rt < 0] + "t,t+h, (13)

RVt,t+h = �0 + �CDBVt + �CWBVW,t + �CMBVM,t + �JDJt

+�JWJW,t + �JMJM,t + �rt ⇤ I[rt < 0] + "t,t+h.
(14)

Practical use of volatility models and forecasts often involves standard deviations (square root

form) or log forms (Andersen et al., 2007; Corsi, 2009; Corsi et al., 2010; Corsi and Reno, 2012)).

Therefore, we also specify Eqs. (13) and 14 for
p
RVt and for log(RVt) respectively as follows:

p
RVt,t+h = ↵+�D

p
RVt+�W

p
RVW,t+�M

p
RVM,t+�J

p
Jt+�rt⇤I[rt < 0]+"t,t+h, (15)

p
RVt,t+h = �0 + �CD

p
BVt + �CW

p
BVW,t + �CM

p
BVM,t + �JD

p
Jt

+�JW

p
JW,t + �JM

p
JM,t + �rt ⇤ I[rt < 0] + "t,t+h.

(16)
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log(RVt,t+h) = ↵ + �Dlog(RVt) + �W log(RVW,t) + �M log(RVM,t) + �J log(1 + Jt)

+�log(1 + rt) ⇤ I[rt < 0] + "t,t+h,

(17)

log(RVt,t+h) = �0 + �CDlog(BVt) + �CW log(BVW,t) + �CM log(BVM,t) + �JDlog(1 + Jt)

+�JW log(1 + JW,t) + �JM log(1 + JM,t) + �log(1 + rt) ⇤ I[rt < 0] + "t,t+h.

(18)

We estimate Eqs (13-18) with h = 1, h = 5, and h = 22 to make one day ahead, one week

ahead, and one month ahead predictions respectively, by using ordinary least squares (OLS). The

error terms, "t,t+h, are assumed to be serially correlated up to (at least) order h � 1 for the fore-

cast horizon h > 1. Therefore, we rely on theNewey–West/Bartlett heteroskedasticity consistent

covariance matrix estimator to obtain the corresponding standard errors allowing for serial cor-

relation of up to order 5 (h = 1), 10 (h = 5), and 44 (h = 22), for respective parameter estimates.

2.3 Estimating Betas - Jump Beta and Overnight Beta

In this section, we propose a simple empirical framework to estimate jump beta and overnight

beta for individual stocks. In a conventional Capital Asset Pricing Model (CAPM) setting, beta of

stock i can be estimated as follows:

ri,t,s = �1,irm,t,s + ↵0,i + ei,t,s. (19)

where rm is market return, ri is stock return at time t, s, and �1,i is the beta of stock i, ↵0 is

intercept and e is the residual.

The literature suggests that stocks respond di�erently to jumps in the market (Alexeev et al.,

2017; Bollerslev et al., 2016; Todorov and Bollerslev, 2010). To capture potential e�ects of market

jumps on the systematic risk of stocks, we extend Eq. (19) as follows:

ri,t,s = �1,irm,t,s + �2,i(rm,t,s ⇤ IJm,t,s
) + ↵1,iI

J

m,t,s
+ ↵0,i + ei,t,s (20)
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where IJ is an idicator function that takes value 1 when there is a market jump, otherwise 0,

�1,i is the beta of the stock when there is no jumps in the market and can be approximated as a

continuous beta, �2,i measures changes in beta of stock i when market experiences jumps, and

↵2,i shows any structural shift due to market jumps. The sum of �1 and �2 above can be de�ned

as jump beta and loosely equivalent to discontinuous beta postulated in Todorov and Bollerslev

(2010).

In addition, the literature suggests that stock returns exhibit di�erent characteristics for intra-

day and overnight returns (Berkman et al., 2012; Bogousslavsky, 2016; Bollerslev et al., 2016; Lou

et al., 2018). To examine how systematic risk changes during the overnight returns, we further

extend Eq. (20) as follows:

ri,t,s = �1,irm,t,s + �2,i(rm,t,s ⇤ IJm,t,s
) + �3,i(rm,t,s ⇤ ION

m,t,s
)

+�4,i(rm,t,s ⇤ IONJ

m,t,s
) + a1,iIJm,t,s

+ a2,iION

m,t,s
+ a0,i + ei,t,s

(21)

where ION is an idicator function that takes value 1 for overnight returns and 0 for intraday

returns, and IONJ = ION ⇤ IJ . Now, �3,i captures the changes in beta of the stock during the

overnight returns, �4,i measures the changes in beta during the overnight jumps, and ↵3,i shows

any structural shift due to overnight returns. The sum of �1+�3 can be de�ned as overnight beta.

Therefore our model in Eq. (21)is �exible to capture e�ects of market jump and overnight returns

while estimating the beta of stocks.

3 Sample and Data

We use data from Canadian stock market provided by SIRCA/Thompson Reuters. To represent

the Canadian stock market we use composite index for Toronto Stock Exchange (GSPTSE). We

also use two other equity portfolios, the blue-chip stock index (TSE60), and the small cap index

(SPTSES). The motive behind using di�erent indices for jump identi�cation purpose is to explore

the heterogeneity across those portfolios if there is any.

Sampling frequency has been a debatable issue in high frequency literature. Using a very

high-frequency data such as 1-minute may su�er frommarket microstructure noise where as us-
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ing lower frequency data such as sixty-minute may su�er from loss of additional information.

The literature suggests that 15-minute sampling helps to maintain a balance between market mi-

crostructure noise and estimation bias (Hansen and Lunde, 2006; Lahaye et al., 2011). We, hence,

use �fteen-minute frequency in this study in order to ensure minimal distortion or bias due to

noise. This sampling frequency is close to the frequency chosen by Bollerslev et al. (2008), who

utilize volatility signature plots for similar large-cap companies from the US to determine opti-

mal frequency in their analysis. Furthermore, Lee (2012) con�rms that using �fteen-minute data

provides satisfactory power of the LM test. The signi�cance level for the LM test is 1%, and we do

not exclude the possibility of detecting jumps in overnight returns. The overnight return refers

to log di�erence of 9:30 am price of day t and 4:00pm price of day t� 1.

Our dataset covers a long time span for about thirteen and half-years of high-frequency data

for Toronto Stock Exchange (TSX) composite index, large cap index, and small-cap index. The

sample period in this paper extends from January 2, 2003, to June 30, 2015, for a total of 3,074

trading days over twelve and half years. Raw data are collected from the Thompson Reuters

Tick History database, which contains tick-by-tick data. The sample is based on price data from

9:30 a.m. to 4:00 p.m., i.e., the normal trading hours on TSX. To examine the e�ect of market

jumps in the systematic risk, we select the most actively traded Canadian large-cap stocks listed

in Toronto Stock Exchange in order to maintain su�cient degrees of liquidity. Of 60 stocks,

we exclude eighteen stocks because of a signi�cant incidence of missing data or unusual name

changes, either of which could create signi�cant bias in empirical results. The name sample �rms

with ticker symbol and corresponding sectoral classi�cation byTSX are provided in theAppendex

of this paper.

4 Results

4.1 Identi�ed Jumps in the Market Index(s)

Figure 1 shows the daily realized volatility, bipower variation and jumps in square root form

(standard deviation) for the GSPTSE, TSE60 and SPTSES indices. The market volatilities are

relatively stable before 2006 and increased during the global �nancial crisis period, reaching at a
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Figure 1: Realized volatilities, bipower variations and jumps

peak during the collapse of the Lehman Brothers in September 2008. The bottom panels of the

Figure 1 reveal although the larger portion of realized volatilities are coming from the continious

compoenent (BV), many of the largest realized volatilities are associated with the jumps in the

underlying price process.

The summary statistics for detected jump counts for three equity indices are presented in

Table 1. Over the sample period, we �nd 508 jumps in the composite market index (GSPTSE)

returns. Such price discontinuities are relatively less frequent in the TSE60 index returns. The

number of jumps in TSE60 index is 459. However, when we look at the jump frequency for

small-cap stock index, we �nd that the the small-cap stocks experience more frequent price dis-

continuities (613 jumps) than TSE60 and the composite index. Our results are consistent with the

notion that small-cap stocks are more volatile than the blue-cheap stocks, therefore exhibit more

price discountinuties.

In high-frequency �nancial econometric literature, there is no unanimous practice about in-

clusion of overnight returns. For example, Alexeev et al. (2017) exclude overnight returns whereas
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Table 1: Descriptive statistics for jump counts and jump size

Including overnight returns Excluding overnight returns
GSPTSE TSE60 SPTSES GSPTSE TSE60 SPTSES

Panel A: Descriptive statistics for jump counts
# of jumps 508 459 613 230 214 347
# of jumps per year 40.64 36.72 49.04 18.40 17.12 27.76
# of jumps per month 3.39 3.06 4.09 1.53 1.43 2.31
# of jump per day 0.17 0.15 0.20 0.07 0.07 0.11
# of days with no jumps 2594 2642 2524 2858 2872 2755
# of days with 1 jump 453 406 488 203 190 293
# of days with 2 jumps 26 25 61 12 12 24
# of days with 3 jumps 1 1 1 1 0 2
Jump probability 0.1561 0.1405 0.1789 0.0703 0.0657 0.1038
Panel B: Descriptive statistics for jump size
# of positive (+) jumps 244 214 312 93 85 120
proportion of (+) jumps 48.03 46.62 50.90 40.43 39.72 34.58
# of negative (-) jumps 264 245 301 137 129 227
of (-) jumps 51.97 53.28 49.10 59.57 60.28 65.42
mean of jump returns (%) -0.0612 -0.0814 -0.0236 -0.1466 -0.1450 -0.2164
standard error of mean (0.0584) (0.0674) (0.0696) (0.0531) (0.0622) (0.0401)
median jump returns (%) -0.3638 -0.4525 0.3124 0.8048 0.9100 0.7466
standard deviation (%) 1.3170 1.4441 1.1773 0.8048 0.5116 0.4291
maximum (%) 13.015 14.250 9.219 3.6474 4.3308 4.3636
minimum (%) -7.026 -7.294 -8.322 -2.7827 -3.1091 -3.6946
average size of (+) jumps 0.9469 1.065 0.8464 0.6505 0.7822 0.6133
median (+) jumps 0.6857 0.7727 0.6081 0.4750 0.6013 0.4890
stdev of (+) jumps 0.9950 1.1435 0.7245 0.5116 0.5922 0.4795
average size of (-) jumps -0.9929 -1.0827 -0.9254 -0.6877 -0.7560 -0.6550
median (-) jumps -0.7714 -0.8626 -0.6675 -0.5235 -0.6027 -0.5455
stdev of (-) jumps 0.7840 0.7835 0.8249 0.4291 0.4481 0.4167

Lee (2012) includes overnight returns. We are interested how robust are the jump counts if we

remove the overnight returns from our sample. To this end, we remove the overnight returns and

reimplement the LM jump test procedure. The results reveal signi�cantly less number of jumps

in all three indices. More speci�cally, we �nd 230 jumps in the composite index, 214 jumps in

the TSE60 index and 347 in small-cap index. These numbers translate into about 43% to 55%

fewer jumps. Therefore, about half of the jumps are due to overnight returns indicating the im-

portance of inclusion of overnight returns in the data.4 A signi�cant price change during the over
4Note that computationally the number of jumps for data excluding overnight returns is not equals to number

of jumps for data including overnight returns minus number of jumps that occurred at overnight returns. See LM
jump detection methodology in Section 2.
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night period is very important for the investors as such price changes are information contained

(Bollerslev et al., 2016; Lou et al., 2018; Patton and Verardo, 2012). Therefore, we retain overnight

returns in our data for further analysis in rest of the paper.

The number of jumps per day (total number of jumps divided by number of trading days) in-

dicates the average rate of jump arrival. It is about 17 percent for the composite index, 15 percent

for the TSE60 index, and about 20 percent for the small-cap index. However, these statistics drop

to about 7 percent for composite and TSE60 index and about 11 percent for small-cap indexwhen

we exclude overnight returns from the data. The rates are calculated with the assumption that the

jump arrival rate is constant over time. We observe, however, that jumps do not occur on regular

time space. Therefore, models with constant jump intensities may not be appropriate.

Regarding the jump probability, our results provided in Table 1 reveal that among the 3074

trading days in our sample, 2594 trading days do not experience price discontinuous in the com-

posite index and in remaining 480 days, there are at least one jump which translate into a jump

probability of 0.1561.5 The jump probability for the TSX60 index is 0.1405 and for the small-cap

index is 0.1789. Our results also show that in some cases, the jump occurs more than once in

a trading day. While looking at the TSX composite index, there are 26 trading days having two

jumps per day, and 1 trading day having 3 jumps. In case of the small-cap index, during the sam-

ple period, 62 trading days experience at least two jumps per day. The days with multiple jumps

and jump probability statistics declines in a proportional rate when we exclude overnight returns

from the tick data.

While looking at the jump intensities, the results in Table 1 Panel B reveal a very interesting

insight. The jumps are not symmetrically distributed, they are left skewed. About 60 (in the

composite and TSX60 indices) to 65 (in the small-cap index) percent jumps are negative jumps.

The average jump size is about - 0.15 percent for the composite and TSX60 indices and about

-0.22 percent for the small-cap index. The null of average jump return, µ � 0 is rejected for all

three indices. The absolute size of positive and negative jumps are similar although the biggest

positive jump (price gain) was as high as 3.65 percent (in 15 mins interval) and largest negative

jump (price decline) was as high as 2.78 percent (in 15 mins interval).
5Jump probability slightly di�ers from average jump arrival rate because in some cases there are more than one

jumps in a single trading day.
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However, when we incorporate both intraday and overnight returns in our analysis, the re-

sults show that there is a symmetric distribution of positive vs. negative jumps. For the composite

index, the average size of positive jump returns is about 0.95 percent and average size of negative

jump returns is about -0.99 percent. The statistics and patterns are similar in other two indices.

Although the average of all jump returns is negative for all three indices, the mean is not signif-

icantly di�erent from zero, that is, we couldn’t reject the null hypothesis of mean jump return,

µ = 0 at 99.9% level of signi�cance. These results imply that the stock price experiences both

positive and negative jumps with a cancellation e�ect resulting into average jump size to zero.

However, the price discontinuities occurred during the trading hours are less idiosyncratic in

nature, therefore has no cancellation e�ect.

Our results shed some lights on contradictive empirical �ndings in the literature. Lou, Polk

and Skouras (2018) show di�erent risk-return dynamics of overnight versus intraday expected

returns. Under di�erent trading strategies, pro�ts are earned entirely overnights or entirely in-

traday typically with pro�ts of opposite signed across these components. Zhou and Zhu (2012)

�nd that average jump return is positive.6 Berkman et al. (2012) and Lou et al. (2018) �nd that

institutional investors tend to trade relatively more during the day and individual investors trade

relatively more overnight, thus indirectly suggesting that the overnight jumps could be more id-

iosyncratic than the intraday jumps.

At what times do jumps occur more often? Table 2 presents the timing of the jumps. It reports

the percentage of detected jumps during speci�c time intervals (15 mins) in a trading day among

all realized jumps. We �nd that about 60% jumps occur in the overnight returns and about 89%

jumps occur within the �rst 30 minutes of trading hours. Even if we exclude overnight returns

and assess the jump counts, about 70% of the jumps are clustered within the �rst 30minutes of the

trading, providing a strong evidence of jump clustering. The evidence for such a strong jump clus-

tering suggests that the accumulated information during the overnight period, although largely

re�ected in �rst transaction, market learning keep evolving for quite sometime. The results also

show that few jumps are clustered around the last 60 minutes of the trading hours (from 15:00

to 16:00). Although all three indices have some degree of closing hour jump clustering, it is more
6They however do not perform whether average jump return is singi�anctly di�erent than zero.
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Table 3: Timing of the Jumps
Including overnight returns Excluding overnight returns
GSPTSE TSE60 SPTSES GSPTSE TSE60 SPTSES

Panel A: On which day do jumps occur more often?
Mon 0.1949 0.2004 0.2333 0.1870 0.1776 0.1931
Tue 0.2205 0.2244 0.2268 0.1522 0.1449 0.1988
Wed 0.1713 0.1590 0.1876 0.2522 0.2430 0.2536
Thu 0.2165 0.2004 0.1909 0.2435 0.2523 0.1960
Fri 0.1969 0.2157 0.1615 0.1652 0.1822 0.1585
Panel B: In which months do jumps occur more often?*

Jan 0.0949 0.0955 0.0837 0.1198 0.1095 0.0934
Feb 0.0650 0.0586 0.0730 0.0369 0.0448 0.0633
Mar 0.0877 0.0923 0.0873 0.1244 0.1244 0.1205
Apr 0.0795 0.0793 0.0899 0.0922 0.0896 0.0843
May 0.0867 0.0782 0.0855 0.0599 0.0597 0.0964
Jun 0.0743 0.0749 0.0801 0.0553 0.0597 0.0783
Jul 0.0908 0.0923 0.0846 0.1198 0.1045 0.0843
Aug 0.0857 0.0836 0.0953 0.0645 0.0597 0.0873
Sep 0.1032 0.1010 0.0899 0.1014 0.1095 0.0994
Oct 0.0857 0.0934 0.0890 0.0922 0.1045 0.0663
Nov 0.0702 0.0749 0.0739 0.0461 0.0547 0.0572
Dec 0.0764 0.0760 0.0677 0.0876 0.0796 0.0693
Panel C: Annual jump frequency

2003 58 59 81 27 27 34
2004 70 67 82 29 25 27
2005 71 67 74 21 19 28
2006 81 68 93 19 15 38
2007 95 86 92 19 17 28
2008 73 71 98 14 13 28
2009 94 90 118 14 12 31
2010 81 78 99 14 13 18
2011 93 93 113 14 16 26
2012 101 95 108 14 13 28
2013 81 82 95 20 20 26
2014 71 65 70 12 11 20
2015** 38 38 41 13 13 15
*Excludes jumps for 2015
**Results are for �rst six months ( Jan-June) only.
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Figure 2: Annual Jump Frequency

evident in the small-cap index which experiences about 5% (when data include overnight returns)

and about 10% (when data exclude overnight returns) of the jumps during the closing hour. The

evidence for jump clustering presented here can be aligned with the literature on market anoma-

lies which provide evidence of intra-day trading patterns. Admati and P�eiderer (1988) state that

more intensive trading take place during the beginning and the end of the trading day along with

higher price volatility compared to other trading hours. Harris (1986) show that prices and last

trades tend to be up during the �rst 45 minutes of trading sessions. Gao et al. (2018) show that

�rst half-hour returns on themarket predict the last half-hour return. Coval and Shumway (2005);

Haigh and List (2005); Odean (1998), all suggest that day-traders can be subject to the disposition

e�ect. Heston et al. (2010) �nd a striking intraday pattern that returns on certain individual stocks

tend to persist at the same half-hour intervals across trading days. Such behavioral and trading

patterns can be attributed to the jump clusting in the market. Our results also align with Boller-

slev et al. (2008)) and Lee (2012) who �nd about 70% jumps occur within 30 mins of trading hours

in the S&P 500 index.

The literature on stock market anomalies suggests the day-of-week e�ects and the month-of-

year e�ects (French, 1980; Solnik and Bousquet, 1990; Szakmary and Kiefer, 2004; Zhang et al.,

2017). Our results reveal that often the jumps are evenly distributed among theweekdays although

Tuesday experiences relatively more jumps for all three indices. However, the results from the re-
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stricted sample (excluding overnight returns) suggest that mid-week day, i.e. Wednesday experi-

ences largest number of jumps, accounting for about 25 percent of all jumps. Regarding themonth

of the year pattern, often in the month of January and September, stock market experiences more

jumps on an average and in the month of February, June, and November, it experiences fewer

jumps. Figure 2 shows the number of jump over the sample period. As our sample ends in June

2015, we have excluded Year 2015 from the graph. During the sample period of 2003-2014, we

�nd lowest number of jumps in 2003 and highest number of jump in 2009.

4.2 Volatility Forecasting: Realized Volatilities, Jumps and Leverage Ef-

fects

We now examine importance of jumps in volatility modelling for the Canadian equity indices in

our sample by implementing HAR-RV class of models of Corsi (2009). Table 4 reports the linear

and non-linear forms of HAR-RVJ regression results. Our discussion here will be more focused

on the non-linear (square root form or standard deviation form). The results show that daily,

weekly and monthly measures of volatility reveal that the estimates for �D , �W , and �M con�rm

the existence of highly persistent volatility dependence. The relative importance of daily volatility

decreases from daily to the weekly to the monthly regressions whereas monthly volatility tends

to be relatively important for weekly and monthly regressions. The estimates for the jump com-

ponent are systematically negative across all the models and all the indices, and overwhelmingly

signi�cant in daily and weekly regressions. The negative sign of the estimate for the jump compo-

nent, �J , indicates that although the realized volatilities are highly persistent, for the days inwhich

part of the realized volatilities comes from the jump component, the increase in the volatility on

the following day will be reduced. In other words, the persistency of volatility diminishes for the

following day’s realized volatility if the realized volatility in the given day is largely attributed to

jumps.

Furthermore, our results provide a strong evidence of leverage e�ect. The coe�cient estimate

for � is statistically signi�cant in one-day ahead and one-week ahead forecasting indicating that

daily negative returns a�ect not only the next day volatility but also the next week volatility.

Our �nding suggests that the investors might aggregate daily and weekly memories, observing
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Table 4: LHAR-RVJ Regressions
RVt,t+h (RVt,t+h)1/2 log(RVt,t+h)

h = 1 h = 5 h = 22 h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

Panel A: GSPTSE
�D 0.581*** 0.468** 0.119 0.323*** 0.235*** 0.114** 0.527*** 0.434*** 0.140**

(0.088) (0.197) (0.074) (0.039) (0.055) (0.044) (0.066) (0.134) (0.067)
�W 0.345*** 0.273** 0.172 0.423*** 0.328*** 0.110 0.352*** 0.269*** 0.151

(0.093) (0.110) (0.132) (0.054) (0.061) (0.119) (0.073) (0.083) (0.129)
�M 0.167** 0.315*** 0.492*** 0.228*** 0.368*** 0.585*** 0.173*** 0.325*** 0.514***

(0.083) (0.068) (0.109) (0.045) (0.056) (0.091) (0.062) (0.063) (0.109)
�J -0.422*** -0.422*** -0.071 -0.095*** -0.088*** -0.026 -0.322*** -0.328*** -0.069

(0.079) (0.153) (0.071) (0.013) (0.018) (0.021) (0.049) (0.089) (0.056)
� -0.128*** -0.076*** -0.029 -0.068*** -0.037*** -0.008 -0.070*** -0.033 -0.005

(0.031) (0.027) (0.020) (0.008) (0.009) (0.008) (0.014) (0.021) (0.014)
↵ 0.021 0.067 0.180*** 0.038** 0.080*** 0.162*** 0.787*** 0.773*** 0.635***

(0.027) (0.046) (0.048) (0.016) (0.031) (0.047) (0.082) (0.129) (0.114)
R̄2 0.6999 0.5677 0.3821 0.7265 0.6146 0.4703 0.7298 0.6021 0.4298
Panel B: TSE60
�D 0.566*** 0.452** 0.093 0.320*** 0.235*** 0.098** 0.506*** 0.418*** 0.123**

(0.087) (0.201) (0.058) (0.038) (0.057) (0.040) (0.062) (0.135) (0.051)
�W 0.341*** 0.277** 0.188 0.431*** 0.335*** 0.122 0.358*** 0.276*** 0.162

(0.094) (0.112) (0.138) (0.055) (0.060) (0.122) (0.074) (0.084) (0.136)
�M 0.160** 0.308*** 0.484*** 0.216*** 0.358*** 0.581*** 0.167*** 0.320*** 0.512***

(0.081) (0.070) (0.109) (0.045) (0.057) (0.093) (0.060) (0.065) (0.110)
�J -0.386*** -0.390** -0.024 -0.083*** -0.081*** -0.010 -0.279*** -0.289*** -0.032

(0.079) (0.159) (0.057) (0.012) (0.018) (0.020) (0.043) (0.089) (0.045)
� -0.136*** -0.077*** -0.030 -0.067*** -0.036*** -0.008 -0.063*** -0.022 0.002

(0.031) (0.025) (0.021) (0.008) (0.008) (0.007) (0.013) (0.021) (0.015)
↵ 0.026 0.076 0.204*** 0.042** 0.085** 0.173*** 0.720*** 0.689*** 0.555***

(0.029) (0.053) (0.056) (0.017) (0.034) (0.052) (0.082) (0.138) (0.139)
R̄2 0.7212 0.5876 0.3986 0.7371 0.6257 0.4787 0.7475 0.6194 0.4473
Panel C: SPTSES
�D 0.403*** 0.326*** 0.182* 0.298*** 0.211*** 0.115** 0.424*** 0.206*** 0.201*

(0.097) (0.113) (0.097) (0.041) (0.052) (0.050) (0.085) (0.068) (0.108)
�W 0.390*** 0.216** 0.035 0.345*** 0.227*** 0.039 0.358*** 0.242*** 0.026

(0.105) (0.086) (0.084) (0.056) (0.059) (0.074) (0.083) (0.066) (0.079)
�M 0.225*** 0.351*** 0.479*** 0.276*** 0.379*** 0.499*** 0.236*** 0.356*** 0.480***

(0.081) (0.090) (0.084) (0.046) (0.061) (0.076) (0.066) (0.081) (0.083)
�J -0.373*** -0.321*** -0.201* -0.130*** -0.103*** -0.062* -0.360*** -0.221*** -0.195*

(0.087) (0.082) (0.114) (0.020) (0.021) (0.033) (0.072) (0.064) (0.109)
� -0.099*** -0.083** -0.023 -0.059*** -0.036*** -0.013 -0.054*** -0.081** -0.008

(0.026) (0.037) (0.016) (0.008) (0.009) (0.009) (0.016) (0.034) (0.008)
↵ 0.054* 0.122*** 0.233*** 0.089*** 0.161*** 0.275*** 0.920*** 1.160*** 1.166***

(0.031) (0.042) (0.035) (0.022) (0.037) (0.046) (0.118) (0.136) (0.125)
R̄2 0.4174 0.2929 0.1474 0.4788 0.3430 0.2040 0.4480 0.3372 0.1705

n 3052 3048 3031 3052 3048 3031 3052 3048 3031
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and reacting to negative price changes occurred in last day or week with a persistent leverage

e�ect. However such persistency vanishes for monthly horizon. The results also indicate that

negative returns make market more volatile which is consistent with literature in �nancial crisis

and contagion. Downward pressure in market may follow some behavior pattern in stock market

such as herd & sell-o�s (Calvo and Mendoza, 2000; Dungey and Gajurel, 2015; Upper, 2011).

Andersen et al. (2007) suggest to separately measuring volatility forecasting from the the in-

dividual components of the realized volatility. To this end, we implement HAR-RV-CJ model

where our right-hand side variables are daily, weekly and monthly measures of bipower vari-

ations and jumps. The results reported in Table 5 indicate that both the continuous and jump

components predict the realized volatility mainly for the daily and weekly horizons. About the

continuous component, daily continuous component is signi�cant over all forecasting horizon

where as weekly BV is signi�cant over daily andweekly forecasting horizon. Themonthly contin-

uous component is signi�cant only in the monthly forecasting horizon. Regarding the jump com-

ponent, daily, weekly and monthly aggregated components are signi�cant for daily and weekly

forecasting horizons only. Therefore, the results suggest that the long memory or persistency in

the volatility is largely coming from the continuous component of the price process. The results

for � are similar to that reported in Table 4 - consistent and persistent in relatively short horizons

-one-day and one-week ahead forecasting.

In nutshell our results indicate that decomposition of realized variance in continuous and

jump components enriches the volatility forecasting, and the long memory of volatility is largely

coming from the continuous component and consistent with the literature (Andersen et al., 2007;

Vortelinos and Thomakos, 2012).

4.3 Market Jumps and Systematic Risk of Stocks

To examine how individual stocks respond to the market jumps, we implement a conventional

CAPM framework to estimate the systematic risk of constituents stocks from Toronto Stock

Exchange, mainly TSX60 constituents considering the liquidity nature of these stocks. We use

GSPTSE, as a proxy for the market portfolio. The results are reported in Table 6.

Our results show that, as expected, all the stocks are exposed tomarket risk. The estimates for

23



Table 6: Estimates for Di�erent Betas
rm rm ⇤ IJ rm ⇤ ION rm ⇤ IONJ IJ ION

Estimates �1 �2 �3 �4 ↵2 ↵3 ↵1 R̄2

Barrick Gold 1.1460*** -0.2236*** -0.2566*** -0.1581*** 0.1385*** 0.0371*** -0.0039*** 0.179
(0.0096) (0.0241) (0.0218) (0.0612) (0.0198) (0.0082) (0.0015)

Agnico Eagle 1.3156*** -0.1776*** -0.2584*** -0.4796*** 0.1334*** 0.0064 -0.0017 0.170
(0.0116) (0.0290) (0.0263) (0.0737) (0.0238) (0.0098) (0.0018)

Agrium 1.3957*** -0.0471** 0.2143*** -0.3204*** -0.0380** -0.0491*** 0.0028* 0.326
(0.0094) (0.0234) (0.0212) (0.0595) (0.0192) (0.0079) (0.0015)

Brook�eld Ast. 1.0638*** 0.0514*** -0.0798*** -0.2752*** 0.0352** -0.0976*** 0.0048*** 0.276
(0.0075) (0.0189) (0.0170) (0.0478) (0.0155) (0.0064) (0.0012)

Blackberry 1.2016*** 0.2020*** -0.2639*** -0.5075*** 0.0075 0.0585*** -0.0017 0.113
(0.0144) (0.0361) (0.0326) (0.0916) (0.0296) (0.0122) (0.0023)

BCE 0.4538*** 0.0979*** 0.0124 -0.1255*** -0.0235** 0.0034 0.0009 0.135
(0.0055) (0.0137) (0.0124) (0.0349) (0.0113) (0.0047) (0.0009)

Bank of MO 0.9108*** 0.0568*** 0.0194* -0.3968*** 0.0393*** -0.0278*** 0.0006 0.419
(0.0049) (0.0122) (0.0110) (0.0309) (0.0100) (0.0041) (0.0008)

Bank of NS 0.9919*** 0.0792*** 0.0053 -0.3828*** 0.0302*** 0.0048 -0.0003 0.476
(0.0047) (0.0118) (0.0107) (0.0300) (0.0097) (0.0040) (0.0007)

Cameco 1.4791*** 0.0757*** -0.0203 -0.1700*** -0.0119 -0.0175** 0.0005 0.343
(0.0092) (0.0230) (0.0208) (0.0583) (0.0189) (0.0078) (0.0014)

CIBC 0.9146*** -0.0040 0.0426*** -0.2097*** 0.0714*** -0.0562*** 0.0016** 0.387
(0.0052) (0.0130) (0.0117) (0.0330) (0.0107) (0.0044) (0.0008)

C. Natural Res. 1.6151*** -0.5576*** 0.2144*** 0.0358 -0.0242 -0.0477*** 0.0020* 0.447
(0.0077) (0.0193) (0.0175) (0.0490) (0.0158) (0.0065) (0.0012)

CN Railways 0.9533*** 0.1127*** -0.2345*** -0.0972*** 0.0240** -0.0534*** 0.0036*** 0.316
(0.0059) (0.0147) (0.0133) (0.0374) (0.0121) (0.0050) (0.0009)

Can. Oil Sands 1.2604*** 0.0319 0.4874*** -0.2161*** -0.0111 -0.0458*** 0.0002 0.314
(0.0097) (0.0242) (0.0219) (0.0615) (0.0199) (0.0082) (0.0015)

CP Railways 0.9702*** 0.1330*** -0.1533*** -0.1699*** 0.0040 -0.0866*** 0.0047*** 0.280
(0.0068) (0.0170) (0.0154) (0.0431) (0.0139) (0.0058) (0.0011)

Cres. Energy 0.7292*** 0.3498*** 0.4298*** -0.4450*** -0.0454** -0.0357*** 0.0025 0.174
(0.0101) (0.0251) (0.0227) (0.0638) (0.0206) (0.0085) (0.0016)

Canadian Tire 0.5810*** 0.0006 -0.0226 -0.0094 0.0065 -0.0943*** 0.0047*** 0.116
(0.0071) (0.0177) (0.0160) (0.0450) (0.0146) (0.0060) (0.0011)

Encana 1.3754*** -0.0632*** 0.0775*** -0.3828*** -0.0370** -0.0216*** -0.0003 0.432
(0.0071) (0.0177) (0.0160) (0.0449) (0.0145) (0.0060) (0.0011)

Eldorado Gold 1.2818*** -0.0800** -0.1302*** -0.4980*** 0.1879*** 0.0206* -0.0022 0.119
(0.0147) (0.0367) (0.0331) (0.0930) (0.0301) (0.0124) (0.0023)

Enbridge 0.8051*** 0.1249*** -0.2450*** -0.2103*** 0.0159 -0.0572** 0.0036*** 0.280
(0.0054) (0.0134) (0.0121) (0.0340) (0.0110) (0.0045) (0.0008)

First Quantum 1.4510*** 0.2890*** 0.5373*** -0.7899*** -0.1481*** -0.0389*** 0.0040* 0.244
(0.0138) (0.0346) (0.0312) (0.0877) (0.0284) (0.0117) (0.0022)

Fortis 0.3648*** 0.2148*** 0.0086 -0.2908*** 0.0026 0.0038 0.0009 0.080
(0.0066) (0.0164) (0.0148) (0.0416) (0.0134) (0.0055) (0.0010)

Goldcorp 1.3035*** -0.2037*** -0.2194*** -0.1781*** 0.1492*** 0.0416*** -0.0035** 0.201
(0.0105) (0.0262) (0.0237) (0.0665) (0.0215) (0.0089) (0.0016)

Gildan 0.8023*** -0.1786*** 0.1025*** 0.1406* 0.0005 -0.0938*** 0.0051*** 0.086
(0.0116) (0.0290) (0.0263) (0.0737) (0.0238) (0.0098) (0.0018)

continue ...24



Table 6 continue: Estimates for Di�erent Betas

rm rm ⇤ IJ rm ⇤ ION rm ⇤ IONJ IJ ION

Estimates �1 �2 �3 �4 ↵2 ↵3 ↵1 R̄2

Husky Energy 1.0918*** 0.1130*** -0.0017 -0.4742*** 0.0503*** -0.0124* 0.0003 0.303
(0.0075) (0.0188) (0.0170) (0.0478) (0.0155) (0.0064) (0.0012)

Emperial Oil 1.2585*** 0.0216 0.0267* -0.3118*** 0.0499*** -0.0626*** 0.0021** 0.426
(0.0066) (0.0164) (0.0149) (0.0417) (0.0135) (0.0056) (0.0010)

Inter Pipeline 0.2659*** 0.3378*** 0.1647*** -0.3847*** -0.0327** -0.0409*** 0.0034*** 0.067
(0.0078) (0.0194) (0.0175) (0.0492) (0.0159) (0.0066) (0.0012)

Kinross Gold 1.3677*** -0.1267*** -0.2371*** -0.4016*** 0.1058*** 0.0417*** -0.0050*** 0.179
(0.0120) (0.0299) (0.0270) (0.0759) (0.0245) (0.0101) (0.0019)

Loblaws 0.4298*** 0.0636*** -0.0080 -0.0347 0.0022 -0.0632*** 0.0021** 0.093
(0.0062) (0.0155) (0.0140) (0.0394) (0.0127) (0.0053) (0.0010)

Manulife 1.2680*** 0.0415** 0.0841*** -0.4853*** 0.0712*** -0.0218*** -0.0006 0.414
(0.0069) (0.0173) (0.0156) (0.0439) (0.0142) (0.0059) (0.0011)

National Bank 0.7912*** 0.0840*** 0.0221* -0.2988*** 0.0522*** -0.0311*** 0.0013 0.313
(0.0054) (0.0135) (0.0122) (0.0343) (0.0111) (0.0046) (0.0008)

Potash Corp 1.4242*** -0.3778*** -0.3203*** 0.4301*** -0.0968*** -0.0673*** 0.0044*** 0.242
(0.0099) (0.0246) (0.0223) (0.0625) (0.0202) (0.0083) (0.0015)

Pemb. Pipeline 0.2189*** -0.0269 0.0357** 0.0684 -0.1127*** 0.0010 0.0016 0.024
(0.0066) (0.0165) (0.0149) (0.0418) (0.0135) (0.0056) (0.0010)

RBC 0.9793*** -0.0427*** 0.0667*** -0.2683*** 0.0681*** -0.0467*** 0.0014* 0.457
(0.0048) (0.0120) (0.0109) (0.0305) (0.0099) (0.0041) (0.0007)

Saputo 0.4364*** 0.2124*** -0.0748*** -0.3620*** 0.0164 -0.0401*** 0.0030** 0.063
(0.0080) (0.0200) (0.0181) (0.0508) (0.0164) (0.0068) (0.0013)

Sun Life 1.1376*** 0.1273*** -0.0358** -0.5918*** 0.1126*** -0.0911*** 0.0022** 0.368
(0.0067) (0.0168) (0.0152) (0.0427) (0.0138) (0.0057) (0.0010)

SNC-Lavalin 0.8461*** 0.1544*** 0.0717*** -0.1762*** 0.0818*** -0.0831*** 0.0034** 0.171
(0.0090) (0.0225) (0.0203) (0.0571) (0.0185) (0.0076) (0.0014)

Suncore 1.6273*** -0.0166 0.2260*** -0.5973*** 0.0025 -0.0584*** 0.0014 0.527
(0.0072) (0.0180) (0.0162) (0.0456) (0.0147) (0.0061) (0.0011)

Telus 0.6466*** 0.0548*** 0.0005 -0.2217*** 0.0515*** -0.1095*** 0.0051*** 0.161
(0.0067) (0.0169) (0.0152) (0.0428) (0.0138) (0.0057) (0.0011)

TA 0.5670*** -0.0203 -0.0780*** -0.0459 -0.0448*** -0.0600*** 0.0013 0.107
(0.0069) (0.0173) (0.0156) (0.0439) (0.0142) (0.0059) (0.0011)

TD Bank 0.9622*** -0.0065 0.0114 -0.3916*** -0.0164* 0.0013 0.0004 0.451
(0.0047) (0.0118) (0.0107) (0.0299) (0.0097) (0.0040) (0.0007)

TransCanada 0.7418*** 0.1904*** -0.1669*** -0.3588*** 0.0097 -0.0264*** 0.0014* 0.306
(0.0049) (0.0122) (0.0111) (0.0310) (0.0100) (0.0041) (0.0008)

ValeantPharma 0.6445*** 0.1071*** -0.0398 -0.1107 0.0548** 0.0410*** 0.0001 0.070
(0.0107) (0.0268) (0.0243) (0.0681) (0.0220) (0.0091) (0.0017)
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beta (index of systematic risk) are statistically signi�cant and positive for all the stocks. However,

19 stocks have aggressive beta (beta greater than 1) and 23 have defensive beta (beta less than 1).

When we examine the impact of market jumps on the systematic risk (beta) of individual stocks,

we �nd that almost all the stocks (with an exception of 8 stocks) respond to the market jumps but

with varying magnitudes and directions. Among 42 stocks in our sample, 12 stocks experience a

decrease in beta whereas 23 stocks experience an increase in beta during the jumps in the market

index. This �nding contradicts with existing literature that reports consistently higher jump risk

response of individual stocks (compared to continuous beta). For example, Alexeev et al. (2017)

report that jump betas are 38 percent higher than continuous betas, Bollerslev et al. (2016) also

�nd that jump betas are higher than continuous betas.

Whenwe further look at the direction of changes in the beta of stocks, we observe an interest-

ing pattern that most of the stocks having aggressive beta tend to exhibit a decrease in systematic

risk and most of the stocks with defensive beta tend to experience an increase in systematic risk

when there are jumps in the market index. Such convergence tend of individual stock’s beta to-

ward market beta (beta equals 1) is consistent with stock price comovement literature. During

the stressful market conditions such as market jumps, stocks exhibit strong comovement yielding

beta closer to market beta. This �nding has a signi�cant portfolio implication. In a well diversi-

�ed portfolio, the systematic risk of the portfolio is less a�ected by the market jumps. When some

stocks in the portfolio experience increased beta and some stocks experience decreased beta, the

overall beta of the portfolio is less a�ected.

Most of the information releases/disclosures (macroeconomic as well as �rm level announce-

ments) take place outside the trading window along with the global market shocks which origi-

nates outside the time zone of trading window also a�ect the stock returns when trading starts,

perhaps the opening of the next trading day. In this regard, the overnight returns may have di�er-

ent characteristics. In this regard, we examine the systematic exposure of overnight returns. Our

results reveal that the market risk (beta) is somewhat di�erent for the overnight returns. Among

the 42 stocks in our sample, 32 stocks’ beta changes for the overnight returns and about half of

these (15) stocks’ beta decreases for the overnight returns where rest experience increase in beta.

However, unlike in the case of market jumps, we don’t see clear evidence of increased comove-
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ment among the stocks. The direction of changes in betas during for the overnight returns do not

show a convergence trend towards market beta. We also �nd that some stocks which do not have

a signi�cant e�ect of market jumps or overnight returns on their systematic risk do experience

changes in systematic risk if jumps do occur in the overnight returns. The statistically signi�cant

coe�cient for dummies for market jumps and overnight returns indicate that market jumps bring

a shift in the average stock returns and on average, stocks exhibit signi�cantly di�erent pattern

and size of price change for the overnight period.

From the sectoral perspective, stocks from Basic materials sector tend to have highly aggres-

sive betas. These stocks are also very sensitive tomarket jumps and overnight returns. The beta of

these stocks decreases during the market jumps and overnight returns. The stocks from Energy

sector also exhibit aggressive betas, however, the e�ects of market jumps and overnight returns

on the beta of these stocks are heterogeneous. Consumer products & services, Industrials, and

Utilities sectors stocks are defensive. While market jumps increase the systematic risk of these

stocks, overnight returns help to reduce the systematic risk. The �nancial �rms in general have

beta closer to the market beta and generally experience an increased systematic risk during the

market jumps and overnight returns.

We further take a cross-sectional perspective and examine whether the changes in the sys-

tematic risk of stocks due to the market jumps and overnight returns across the �rms are statisti-

cally signi�cant. To this end, we compute the cross-sectional average of �1 (continuous beta) and

cross-sectional average of �1+�2 (jump beta)7 and performa a t-test whether there is a signi�cant

di�erence between continuous beta and jump beta. The null of no di�erence is not rejected at 5%

level of signi�cance. Alternatively, we also computed cross-sectional average of �2 which simply

measures the average change in beta due to the market jumps, the null of average di�erence is

zero is not rejected at 5% level. We follow the same procedure to examine average change in beta

due to overnight returns and we couldn’t reject the null that the average change in overnight beta

is zero. The heterogeneity across the stocks for the systematic risk and mean shift provide mean-

ingful insight for portfolio diversi�cation. While it has been well advocated about the systematic

risk impact of market jumps and overnight returns in the literature, our simple yet robust results
7Note that if �2 is not statistically signi�cant, �1 + �2 = �1
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indicate that these risks are less systematic in nature and likely to be eliminated through portfolio

diversi�cation. Our results are consistent with Jarrow and Rosenfeld (1984) and Yan (2011) also

suggests that jump risk is largely idiosyncratic in nature. Alexeev et al. (2016) demonstrate that

the jump beta dissipates quickly through portfolio diversi�cation.

Our results for overnight beta are consistent with asset pricing literature which suggest that

stock prices behave very di�erently with respect to their sensitivity to market risk (beta) when

markets are open for trading versus when they are closed (Heston et al., 2010; Savor and Wilson,

2016). Lou et al. (2018) show that momentum pro�ts accrue solely overnight for U.S. stocks over

1993 to 2013. Bogousslavsky (2016) documents substantial variation in the cross-section of re-

turns over the trading day and overnight. We thus view the overnight and intraday components

of returns as potentially re�ecting the speci�c demand by the corresponding clientele.

4.4 Robustness of the Results

We perform a battery of robustness checks. Our results are robust to sampling frequency of tick

data - using 5-minute, and 30-minute. Although the jump count statistics, as in the existing liter-

ature, di�er as we change the sampling frequency, the overall results, for example, the proportion

of positive/native jumps, jump clustering, and proportion of daily, monthly and annual jumps

are very similar to the one reported in the paper. For the robustness in Section 4.3, we also use

TSE60 index as a proxy for market portfolio considering the fact that all our sample �rms are

TSE60 constituents. We also run the regression excluding the overnight return and restricting

the parameter for overnight return interaction term to zero. Overall, our main results remain

very similar.

5 Concluding remarks

In this paper, we use high-frequency data from the Canadian equity market for the �rst time and

identify and assess the jump risk. Implementing Lee and Mykland (2007) procedure, we identify

jumps in the Canadian stock market indices and provide a strong evidence of jump clustering.

Our results show that jump counts and jump intensities are sensetive to inclusion/exclusion of
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overnight returns in the analysis. More than �fty percent jumps in the aggregate stock market in-

dex are attributed to the ovenight returns. The symetrical distribution of positive versus negative

jumps can be observed only when we include overnight returns, thereby overnight jumps in the

analysis - revealing idiosyncratic natue of jump returns. Therefore, jump risk analysis excluding

overnight returns may lead to baised results.

Assessing the importance of jump component in volatility modeling and forecasting, we have

shown that large part of the realized volatility is coming from the continious compoenent yet

largest spikes in the realized volatilty is coming from the jump component. While long mem-

ory and persistency, and leverage e�ect are evident in our results, jump component has limited

economic signi�cance in volatility forecasting mainly in weekly and monthly forecasting.

The cross-sectional dampening e�ect of changes in systematic risk of individual stocks due

to market jumps further support to the conclution that jump risk is non-systematic in nature.

However, the e�ect of overnight returns on beta is less idiosyncratic in nature, therefore need to

pay due attention while assess risk-return analysis using high-frequency data.

References

Admati, A. R. and P. P�eiderer (1988). A theory of intraday patterns: Volume and price variability.

Review of Financial Studies 1, 3–40.

Alexeev, V., M. Dungey, andW. Yao (2016). Continuous and jump betas: Implications for portfolio

diversi�cation. Econometrics 4(2), 27.

Alexeev, V., M. Dungey, and W. Yao (2017). Time-varying continuous and jump betas: The role of

�rm characteristics and periods of stress. Journal of Empirical Finance 40, 1 – 19.

Alexeev, V., G. Urga, and W. Yao (2019). Asymmetric jump beta estimation with implications for

portfolio risk management. International Review of Economics and Finance 62, 20 – 40.

Andersen, T. G., L. Benzoni, and J. Lund (2002). An empirical investigation of continuous-time

equity return models. The Journal of Finance 57 (3), 1239–1284.

29



Andersen, T. G., T. Bollerslev, and A. Das (2001). Variance-ratio statistics and high-frequency data:

Testing for changes in intraday volatility patterns. The Journal of Finance 56(1), 305–327.

Andersen, T.G., T. Bollerslev, and F. X.Diebold (2007, November). Roughing it up: Including jump

components in the measurement, modeling, and forecasting of return volatility. The Review of

Economics and Statistics 89(4), 701–720.

Andersen, T. G., T. Bollerslev, andN.Meddahi (2004). Analytical evaluaiton of volatility forecasts.

International Economic Review 45(4), 1079–1110.

Barndor�-Nielsen, O. E. and N. Shephard (2006). Econometrics of testing for jumps in �nancial

economics using bipower variation. Journal of Financial Econometrics 4(1), 1–30.

Berkman, H., P. D. Koch, L. Tuttle, and Y. J. Zhang (2012). Paying attention: Overnight returns

and the hidden cost of buying at the open. Journal of Financial and Quantitative Analysis 47 (4),

715–741.

Black, F. andM. Scholes (1973). The pricing of options and corporate liabilities. Journal of Political

Economy 81(3), 637–654.

Bogousslavsky, V. (2016). Infrequent rebalancing, return autocorrelation, and seasonality. The

Journal of Finance 71(6), 2967–3006.

Bollerslev, T., T. H. Law, and G. Tauchen (2008). Risk, jumps, and diversi�cation. Journal of

Econometrics 144(1), 234 – 256.

Bollerslev, T., S. Z. Li, and V. Todorov (2016). Roughing up beta: Continuous versus discontinuous

betas and the cross section of expected stock returns. Journal of Financial Economics 120(3), 464

– 490.

Calvo, G. A. and E. G. Mendoza (2000). Rational contagion and the globalization of securities

markets. Journal of International Economics 51(1), 79 – 113.

Corsi, F. (2009, 02). A simple approximate long-memory model of realized volatility. Journal of

Financial Econometrics 7 (2), 174–196.

30



Corsi, F., D. Pirino, and R. Renò (2010). Threshold bipower variation and the impact of jumps on

volatility forecasting. Journal of Econometrics 159(2), 276 – 288.

Corsi, F. and R. Reno (2012). Discrete-time volatility forecasting with persistent leverage e�ect

and the link with continuous-time volatility modeling. Journal of Business and Economic Statis-

tics 30(3), 368–380.

Coval, J. D. andT. Shumway (2005). Do behavioral biases a�ect prices? The Journal of Finance 60(1),

1–34.

Das, S. R. and R. Uppal (2004). Systemic risk and international portfolio choice. The Journal of

Finance 59(6), 2809–2834.

Dumitru, A.-M. and G. Urga (2012). Identifying jumps in �nancial assets: A comparison between

nonparametric jump tests. Journal of Business and Economic Statistics 30(2), 242–255.

Dungey, M. and D. Gajurel (2015). Contagion and banking crisis – international evidence for

2007–2009. Journal of Banking and Finance 60, 271 – 283.

Eraker, B., M. Johannes, and N. Polson (2003). The impact of jumps in volatility and returns. The

Journal of Finance 58(3), 1269–1300.

French, K. R. (1980). Stock returns and the weekend e�ect. Journal of Financial Economics 8(1), 55

– 69.

Gao, L., Y. Han, S. Z. Li, and G. Zhou (2018). Market intraday momentum. Journal of Financial

Economics 129(2), 394 – 414.

Haigh, M. S. and J. A. List (2005). Do professional traders exhibit myopic loss aversion? An

experimental analysis. The Journal of Finance 60(1), 523–534.

Hansen, P. R. and A. Lunde (2006). Realized variance and market microstructure noise. Journal of

Business and Economic Statistics 24(2), 127–161.

Harris, L. (1986). A transaction data study of weekly and intradaily patterns in stock returns.

Journal of Financial Economics 16(1), 99 – 117.

31



Heston, S. L., R. A. Korajczyk, and R. Sadka (2010). Intraday patterns in the cross-section of stock

returns. The Journal of Finance 65(4), 1369–1407.

Huang, X. and G. Tauchen (2005). The relative contribution of jumps to total price variance.

Journal of Financial Econometrics 3(4), 456–499.

Jacod, J. and V. Todorov (2009). Testing for common arrivals of jumps for discretely observed

multidimensional processes. The Annals of Statistics 37 (4), pp. 1792–1838.

Jarrow, R. A. and E. R. Rosenfeld (1984). Jump risks and the intertemporal capital asset pricing

model. The Journal of Business 57 (3), 337–351.

Lahaye, J., S. Laurent, and C. J. Neely (2011). Jumps, cojumps and macro announcements. Journal

of Applied Econometrics 26(6), 893–921.

Lee, S. S. (2012). Jumps and information �ow in �nancial markets. The Review of Financial Stud-

ies 25(2), 439–479.

Lee, S. S. and P. A. Mykland (2007). Jumps in �nancial markets: A new nonparametric test and

jump dynamics. Review of Financial Studies 21(6), 2535.

Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock

portfolios and capital budgets. The Review of Economics and Statistics 47 (1), 13–37.

Lou, D., C. Polk, and S. Skouras (2018). A tug of war: Overnight versus intraday expected returns.

Technical report, London School of Economics.

Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics and Man-

agement Science 4(1), 141–183.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal

of Financial Economics 3(1), 125 – 144.

Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica 34(4), 768–783.

32



Muller, U. A., M. M. Dacorogna, R. D. Dave, R. B. Olsen, O. V. Pictet, and J. E. von Weizsacker

(1997). Volatilities of di�erent time resolutions - analyzing the dynamics of market compo-

nents. Journal of Empirical Finance 4(2), 213 – 239. High Frequency Data in Finance, Part

1.

Odean, T. (1998). Are investors reluctant to realize their losses? The Journal of Finance 53(5),

1775–1798.

Patton, A. J. and M. Verardo (2012). Does beta move with news? Firm-speci�c information �ows

and learning about pro�tability. Review of Financial Studies 25(9), 2789–2839.

Savor, P. and M. Wilson (2016). Earnings announcements and systematic risk. The Journal of

Finance 71(1), 83–138.

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of

risk. The Journal of Finance 19(3), 425–442.

Solnik, B. and L. Bousquet (1990). Day-of-the-week e�ect on the Paris Bourse. Journal of Banking

and Finance 14(2), 461 – 468.

Szakmary, A. C. andD. B. Kiefer (2004). The disappearing january/turn of the year e�ect: Evidence

from stock index futures and cash markets. Journal of Futures Markets 24(8), 755–784.

Todorov, V. and T. Bollerslev (2010). Jumps and betas: A new framework for disentangling and

estimating systematic risks. Journal of Econometrics 157 (2), 220–235.

Upper, C. (2011). Simulation methods to assess the danger of contagion in interbank markets.

Journal of Financial Stability 7 (3), 111 – 125.

Vortelinos, D. I. and D. D. Thomakos (2012). Realized volatility and jumps in the athens stock

exchange. Applied Financial Economics 22(2), 97–112.

Yan, S. (2011). Jump risk, stock returns, and slope of implied volatility smile. Journal of Financial

Economics 99(1), 216 – 233.

33



Zhang, J., Y. Lai, and J. Lin (2017). The day-of-the-week e�ects of stock markets in di�erent

countries. Finance Research Letters 20, 47 – 62.

Zhou, H. and J. Q. Zhu (2012). An empirical examination of jump risk in asset pricing and volatility

forecasting in China’s equity and bond markets. Paci�c-Basin Finance Journal 20(5), 857 – 880.

Appendix

34



Table 7: List of sample �rms with tickers and industry classi�cations
Ticker Name Industy classi�cations
ABX Barrick Gold Corporation Basic materials
AEM Agnico Eagle Mines Limited Basic materials
AGU Agrium Inc. Industrials
BAM.A Brook�eld Asset Management Inc Financial services
BB Blackbary LImited Technology
BCE BCE Inc. Communicaiton services
BMO Bank of Montreal Financial services
BNS Bank of Nova Scotia Financial services
CCO Cameco Corporation Basic materials
CM Canadian Imperial Bank Of Commerce Financial services
CNQ Canada Natural Resources Limited Energy
CNR Canada National Railway Company Industrials
COS Canadian Oil Sands Limited Energy
CP Canada Paci�c Railway Limited Industrials
CPG Crescent Point Energy Corporaiton Energy
CTC.A Canadian Tire Corporation Consumer products & services
ECA Encana Corporation Energy
ELD Eldorado Gold Corporation Basic materials
ENB Enbridge Inc. Energy
FM First QuantumMinerals Limited Basic materials
FTS Fortis Inc. Utilities
G Goldcorp Inc. Basic materials
GIL Gildan Activeware Inc. Consumer products & services
HSE Husky Energy Inc. Energy
IMO Imperial Oil Limited Energy
IPL Inter Pipeline Limited Energy
K Kinross Gold Corporation Basic materials
L Loblaw Companies Limited Consumer products & services
MFC Manulife Financial Corporation Financial services
NA National Bank of Canada Financial services
POT Potash Corporation of Saskatchewan Basic materials
PPL Pembina Pipeline Corporation Industrials
RY Royal Bank of Canada Financial services
SAP Saputo Inc. Consumer products & services
SLF Sun Life Financial Inc. Financial services
SNC SNC-Lavalin Group Inc. Industrials
SU Suncore Energy Inc. Energy
T Telus Corporation Telcomm
TA TransAlta Corporation Utilities
TD Toronto-Dominion Bank Financial services
TRP TransCanada Corporation Energy
VRX Valeant Pharmaceuticals Inc. Healthcare
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