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Abstract 

This paper contains three novelties. First, duration (intra-trade intervals) is 

assigned positive and negative values, based on whether it was a bid-trade or 

ask-trade. Second, as the transformed durations are no longer “asymmetric”, 

a more GARCH-like alternative to the ACD model is proposed for modelling 

durations. The alternative model is called the ACDD model, where the DD 

stands for Directional Duration. Third, using the alternative ACD formulation, 

persistence in durations is addressed both in the mean and the variance 

equations of the ACDD model. 
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1 Introduction 

High-frequency financial time series have become widely available during the 

past decade or so. Records of all transactions and quoted prices are readily 

available in pre-determined formats from many stock exchanges. An inherent 

feature is that such data are irregularly spaced in time. Several approaches 

have been taken to address this feature of the data. 

The seminal work originated with Engle and Russell (1998), where the time 

between events (trades, quotes, price changes etc.) or durations are the 

quantities being modeled. These authors proposed a class of models called 

the Autoregressive Conditional Duration, or ACD, models, where conditional 

(expected) durations are modeled in a fashion similar to the way conditional 

variances are modeled using ARCH and GARCH models of Engle (1982) and 

Bollerslev (1986). 

ACD models and GARCH models share several common features, ACD 

models being commonly viewed as the counterpart of GARCH models for 

duration data. Both models rely on a similar economic motivation following 

from the clustering of news and financial events in the markets. The 

autoregressive ACD model allows for capturing the duration clustering 

observed in high frequency data, i.e., small (large) durations being followed by 

other small (large) durations in a way similar to the GARCH model accounting 

for the volatility clustering. Just as a low order GARCH model is often found to 

suffice for removing the dependence in squared returns, a low order ACD 

model is often successful in removing the temporal dependence in durations. 

Following the GARCH literature, a number of extensions to the original linear 

ACD model by Engle and Russell (1998) have been suggested. These include 

the logarithmic ACD model of Bauwens and Giot (2000), and the threshold 

ACD model of Zhang, Russell and Tsay (2001). The distribution associated 

with the conditional durations has also been suggested to have several 

different shapes. Examples include the the exponential and Weibull 

distributions as in Engle and Russell (1998), and the Burr and generalized 

gamma distributions suggested by Grammig and Maurer (2000) respectively. 
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However, a crucial assumption for obtaining QML consistent estimates of the 

ACD model and its extensions is that the conditional expectation of durations 

is correctly specified. The QML estimation yields consistent estimates and the 

inference procedures in this case are straightforward to implement, but this 

comes at the cost of efficiency. In practice, fully efficient ML estimates might 

be preferred. 

The inherent limitations in the ACD model and its extensions to date have 

been a direct consequence of the positive asymmetric density assumed for iε  

in all these models as time between successive trades are positive (see 

Hautsch (2004)). Furthermore, the assumption of iid innovations may be too 

strong and inappropriate for describing the behaviour of some financial 

durations. Empirical studies based on the linear ACD model often reveal 

persistence in durations as the estimated coefficients on lagged variables add 

up nearly to one. Moreover, many financial duration series show a hyperbolic 

decay, i.e., significant autocorrelations up to long lags. This suggests that a 

better fit might be obtained by accounting for longer term dependence in 

durations. Indeed, the standard ACD model imposes an exponential decay 

pattern on the autocorrelation function typical for stationary and invertible 

ARMA processes. This may be completely inappropriate in the presence of 

long memory processes. 

In this paper we provide and slightly different approach to work originated by 

Engle and Russell (1998). We propose an alternative definition of durations, 

where positive durations depict “ask-durations” and negative durations depict 

“bid-durations”. This approach enables the resultant error density to be 

symmetrical. The resultant model is called the Autoregressive Conditional 

Directional Duration (ACDD) model. 

2 The basic ACDD model 

The time series of arrival times or durations between successive occurrences 

of certain events associated with the trading process can be defined in a 

number of ways. Examples include the time between successive trades, the 
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time until a price change occurs or until a pre-specified number of shares or 

level of turnover has been traded. We define directional duration as the time 

between successive trades where the trades at the ask-quotes are positive 

and at the bid-quotes are negative. In doing so we are able to differentiate 

between the arrival times of bid and ask-quotes. 

The basic ACDD model relies on a linear parameterization of the conditional 

duration, iψ , which depends on p  past absolute directional durations, i jδ −  

and q  past conditional durations, i jψ −  as defined by: 

 
1 1

p q

i j i j j i j
j j

ψ ω α δ β ψ− −
= =

= + +∑ ∑  (1.1) 

where 1i i i i( t t )δ γ −= −  are the directional durations and 1iγ =  for an ask-

durations and 1iγ = −  for bid-durations with t  being the trade times. To 

ensure positive conditional durations for all possible realizations, sufficient but 

not necessary conditions are 0ω > , 0α ≥ , 0β ≥ . The main assumption 

behind ACDD model is that the standardized directional durations, 

 i
i

i

δε
ψ

= , (1.2) 

are independent and identically distributed (iid) with 0iE( )ε =  and 2 1iE( )ε = . 

Directional durations thus defined enable symmetrically distributed innovation 

errors to be assumed as shown in Figure 1 below. It can be seen that the 

directional durations are both positive and negative, whereas standard 

durations have positive support. 
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Figure 1: Standard, Directional and |Directional| Durations in seconds (IBM data) 

Let f ( , )εε θ  be the density function for ε  with parameters εθ . A natural 

choice convenient for estimation will be any family of suitable symmetrical 

distributions. We adopt the generalized error distribution (GED) family 

proposed by Nelson (1991) to capture the fat tails, if any, in the error terms. If 

a random variable iε  has a GED with mean zero and unit variance, the PDF 

of iε  is given by: 

 1

1 2

2 1
i

i ( ) /

exp ( / ) /
f ( )

( / )

υ

υ υ

υ ε λ
ε

λ υ+

⎡ ⎤−⎣ ⎦=
• Γ

 (1.3) 
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υ
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 (1.4) 
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and υ  is a positive parameter governing the thickness of the tail behaviour of 

the distribution. When 2υ =  the above PDF reduces to the standard normal 

PDF; when 2υ < , the density has thicker tails than the normal density; when 

2υ > , the density has thinner tails than the normal density. When the tail 

thickness parameter 1υ = , the PDF of the GED reduces to the PDF of a 

double exponential distribution (analogous to the exponential distribution in 

the basic ACD model of Engle and Russell (1998)). 

Based on the above PDF, the log-likelihood function of ACDD model with 

GED errors can be constructed as such maximum likelihood (ML) estimators 

for the ACDD parameters can be obtained as opposed to the quasi-maximum 

likelihood (QML) estimators used in ACD models. Furthermore, the re-

definition of durations to bid- and ask-based durations enables us to fully 

adopt GARCH formulations, meaning both the mean equation and the 

variance equation in the standard GARCH model and its extensions can be 

utilitsed. 

The autocorrelation properties of standard durations led to the development of 

the original ACD model where the error terms were assumed to be iid. 

Distributions defined on positive support typically imply a strict relationship 

between the first moment and higher order moments and do not disentangle 

the conditional mean and variance function. For example, under the 

exponential distribution, all higher order moments directly depend on the first 

moment. Hence the inherent restrictiveness or inflexibility encountered with 

ACD models. 

In fact, a battery of tests on the IBM data (not reported in this paper) reveal 

that the durations, apart from being autocorrelated and having arch effects, 

also exhibit long range dependence (long memory) and non-stationarity. Thus, 

whist crucial for the ACD model and its extensions the “assumptions of iid 

innovations may be too strong and inappropriate for describing the behaviour 

of trade durations” (see Pacurar (2006)).  

In the above ACDD formulation, the directional durations still exhibit long 

range dependence (long memory) and non-stationarity in addition to being 
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autocorrelated and arched. In addition, diurnal and day-of-the-week (DoW) 

components have also been observed in duration data (see …). To address 

these stylised characteristics and as several ‘trend-generating’ mechanisms 

may occur simultaneously we include a SEMIFAR-type mean equation into 

the ACDD model. 

3 The SEMIFAR-ACDD model 

Semiparametric fractional autoregressive (SEMIFAR) models (see Beran and 

Feng (2002)) have been introduced for modelling different components in the 

mean function of a financial time series simultaneously, such as 

nonparametric trends, stochastic nonstationarity, short- and long-range 

dependence as well as antipersistence. SEMIFAR includes ARIMA and 

FARIMA processes (see Hosking (1981); Granger and Joyeux (1980)). 

Let 0 5 0 5d ( . , . )= −  be the fractional differencing parameter, 0 1m { , }∈  be the 

integer differencing parameter, L  be the lag or backshift operator, ( L )φ  and 

( L )θ  be the lag polynomials in L  with no common factors and all roots 

outside the unit circle and iε  be white noise, then the SEMIFAR model can be 

defined as (see Feng, Beran and Yu (2007)): 

 1 1d m
i i i( L )( L ) [( L ) y g( ) ( L )φ τ θ ε− − − =  (1.5) 

where i it / nτ =  is the rescaled time. 

Similarly, in the SEMIFAR–ACDD model, the mean equation in is defined as 

follows: 

 1 1d m
i i i( L )( L ) [( L ) g( ) ( L )φ δ τ θ ζ− − − =  (1.6) 

with the duration equation defined by: 

 
1 1

p q

i j i j j i j
j j

ψ ω α ζ β ψ− −
= =

= + +∑ ∑  (1.7) 
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where iζ  is then the adjusted directional duration. To ensure positive 

conditional durations for all possible realizations, sufficient but not necessary 

conditions are that 0ω > , 0α ≥ , 0β ≥ . The main assumption behind 

SEMIFAR-ACDD model is that the standardized directional durations, 

 i
i

i

ζε
ψ

= , (1.8) 

are independent and identically distributed (iid) with 0iE( )ε =  and 2 1iE( )ε = . 

4 Methodology 

Based on the SEMIFAR-ACDD model above and the asymptotic results for 

the SEMIFAR-GARCH formulation obtained by Feng, Beran and Yu (2007), 

the following algorithm in S-PLUS is proposed for the practical implementation 

of the SEMIFAR–ACDD model: 

 

(a) Carry out data-driven SEMIFAR fitting using algorithm, AlgB in Beran and 

Feng (2002) to the square-root of observations to obtain g( )τ , ( L )φ  and 

( L )θ ; 

(b) Calculate the residuals i i ig( )ξ δ τ= −  and invert iξ  using ( L )φ  and ( L )θ  

into iζ̂ , the estimates of iζ ; 

(c) Estimate the ACDD model using S-PLUS/GARCH software taking the 

residuals of the SEMIFAR model  in (b) above.  

 

The best SEMIFAR-ACDD model is then determined as follows: 

(a) For 1 maxp , p=  and 1 maxq ,q=  estimate ACDD(p,q) and calculate BIC(p, q); 

(b) Choose the ACDD(p,q) model that minimizes the BIC. We obtain the fitted 

ACDD model, where the BIC in S-PLUS will be used, which is given by: 

 BIC(p, q) = -2  log(maximized likelihood) + (log n)(p + q + 2)•  (1.9) 
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The estimated parameter vectors for the SEMIFAR and the ACDD models are 

asymptotically independent (see Feng, Beran and Yu (2007)). With the trend 

function in the SEMIFAR–ACDD model, it is inconvenient to select the two 

equations (1.6 and 1.7) at the same time. Thus they are selected separately. 

The best-fit SEMIFAR model is chosen from r=0,1,2  and s=0  and the best-

fit ACDD model selected from p = 0,1,2  and q = 0, 1, 2 , by means of the 

minimal BIC. 

5 The Data 

The dataset in this paper is the IBM data used in the seminal paper titled 

"Autoregressive Conditional Duration: A New Model for Irregularly Spaced 

Transaction Data" by Engle and Russell (1998) and downloaded from 

http://weber.ucsd.edu/~mbacci/engle. This is to enable direct comparisons to 

be made with the basic ACD model and data. 

A total of 60328 transactions were recorded for IBM over the 3 months of 

trading on the consolidated market from November 1990 through January 

1991. As per the seminal paper, two days from the three months were 

deleted. A halt occurred on 23rd November and a more than one hour opening 

delay occurred on 27th December. Following Engle and Russell (1998) the first 

half hour of the trading day (i.e. trades before 10.00am) is omitted. This is to 

avoid modeling the opening of the market which is characterized by a call 

auction followed by heavy activity. The dynamics are likely to be quite different 

over this period. Furthermore, the call auction transactions are not recorded at 

the same time each morning. 

In addition, all trades after 4.00pm were also omitted. After omitting these two 

days and times, of the original 60328 transactions there were 51356 

observations left. Of the transactions occurring at non-unique trading times, 

nearly all of them corresponded with zero price movements. Engle and 

Russell (1998) suggest that these transactions may reflect large orders that 

were broken up into smaller pieces. As it is not clear that each piece should 

be considered a separate transaction, the zero-second durations were 
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considered to be a single transaction and were deleted from the data set as in 

Engle and Russell (1998). After all the adjustments to the data, 46052 

observations were collated. 

In their seminal paper, Engle and Russell (1998) reported 46091 final IBM 

observations. This is probably a typo (it should have been 46051) as their 

other reported summary statistics for the same dataset was identical with a 

mean duration of 28.38 seconds, maximum duration of 561 seconds and 

standard deviation of 38.41 seconds. We ended up with 46052 observations, 

the extra 1 observation is due to the way we computed the durations. 
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Figure 2 ACFs of functions of Standard and Directional Durations 

It can be seen from Figure 2 that the autocorrelation properties of the 

standard duration and the absolute directional durations are identical by 

definition. However, the ACF plot of the directional durations exhibit AR(MA) 

effects. 
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Herein the difference between standard and directional durations: first order 

dependencies are fundamentally different. The inclusion of the SEMIFAR 

equation to ACDD model ensures that the error residuals are IID. However, 

the second order dependencies are identical. Consequently, the conditional 

duration equation remains unchanged. 

6 Results 

Figure 3 exhibits the adjusted durations (square-root) for both the standard 

and directional durations. The standard durations were adjusted using the 

trend function using the SEMIFAR(0,0) model. Though this adjustment is 

different to that done by Engle and Russell (1998) it is similar. 
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Figure 3: Adjusted Durations (square-root) 
 

As mentioned earlier, the AlgB in Beran and Feng (2002) was used for 

estimating the SEMIFAR portion of the model. The trend was estimated by 

local linear regression using a kernel as the weight function. For the short-



Page 13 of 17 

memory effects, only an AR component was considered. The SEMIFAR 

model is chosen from r = 0,1,2. 

 
 lb-stat lm-stat rs-stat kpss-stat 
AdjsqSD 10725.0039 2333.2642 1.2841 0.0444 
p.value <0.01 <0.01 >0.1 >0.1 
AdjsqDD 30.7122 1733.0241 0.6662 0.0117 
p.value >0.1 <0.01 >0.1 >0.1 

Table 1: Adjusted Duration Statistics (square-root) 
 

The adjusted standard durations (ASD) are still contain autocorrelations and 

arch effects. The directional durations are based on the adjusted durations 

and further adjusted using the SEMIFAR model. As can be seen from Table 1 

the ADD series have no autocorrelation and long memory, but still have arch 

effects. All the ADD statistics are however significantly lower than that of the 

ASD statistics. The ACD, ACDD and SEMIFAR-ACDD models are then fitted 

and tested. The ACD and ACDD coefficients for the duration equations are 

listed in Table 2. The duration parameters are of the same order. The GED 

parameter values for all models are greater than the value of 2 for a normal 

distribution. 

 
 "ACD" "ACDD" "SEMIFAR-ACDD" 
"A" 0.0195 0.0174 0.018 
"ARCH(1)" 0.066 0.0622 0.057 
"GARCH(1)" 0.9191 0.9242 0.9297 
"dist.par" 2.9635 2.9423 2.1682 
Table 2: ACDD coefficients and ged-parameter 
 

The ACD and ACDD statistics are displayed in Table 3. The ACD and ACDD 

models have dependent residuals, arch effects and non-normal distributions. 

The SEMIFAR-ACDD MODEL has no dependency, still has some arch effects 

and non-normality in the standardized residuals. 

 
 lb-stat lm-stat jb-stat 
ACD 42.1238 35.2505 10643.7801 
p.value 0.0002 0.0023 0 
ACDD 4112.4265 33.0222 780.0414 
p.value 0 0.0047 0 
SEMIFAR-ACDD 7.2107 37.4595 255.0674 
p.value 0.9515 0.0011 0

Table 3: ACD/ACDD statistics 
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The Ljung-Box statistic for the ACD model was 42.12 is of the same order of 

the reported statistic (lb-stat=38.08) in Engle and Russell (1998). 

 

The SEMIFAR-ACDD model is chosen from p = 0,1,2 and q = 0,1,2 by means 

of BIC/AIC/LL. The best ACDD model fitted is the SEMIFAR-ACDD(1,2) as 

shown by the lowest values in Table 4. 

 
 acdd01 acdd02 acdd10 acdd11 acdd12 acdd20 acdd21 acdd22
AIC 141633 143134 140967 139181 139173 140722 139169 140768
BIC 141659 143169 140993 139216 139217 140757 139213 140820
LL -70814 -71563 -70481 -69587 -69582 -70357 -69580 -70378
 
Table 4: BIC, AIC and LL-values for ACDD models 
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Figure 4: ACD and SEMIFAR-ACDD conditional durations 

In Figure 4 above, the points in black depict the conditional durations from the 

SEMIFAR-ACDD model, whereas the grey lines depict the conditional 

durations from the ACD model. The results are similar but not identical. 
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7 Conclusion 

This paper modifies the ACD approach to a SEMIFAR–ACDD model so that 

trends and long memory in durations can be modelled using a more 

parsimonious parameterisation. A semi-parametric estimation procedure is 

proposed for the trend function. Asymptotic results on the SEMIFAR-GARCH 

model as reported by Feng, Beran and Yu (2007) are extended to the 

SEMIFAR-ACDD model.  

The important property that the estimates of the FARIMA and ACDD 

parameter vectors are independent of each other, allow us to apply the data-

driven SEMIFAR algorithms to estimate the trend and the FARIMA 

parameters in the SEMIFAR–ACDD model. The ACDD parameters from the 

approximated ACDD innovations are calculated by inverting the final 

residuals. 

The results show that the proposed algorithm and model can be used to 

model dependencies in durations data. Further possible extensions to the 

model include leverage effects and the range of GARCH-type extensions. 
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