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tA novel point pro
ess framework to examine the links betweentransa
tion data a
ross equity markets is proposed. Moving beyond asimple exponential kernel spe
i�
ation, it is shown that the kernel ma-trix 
an be estimated by solving a system of integral equations whi
his uniquely 
hara
terised by se
ond order 
umulants. The 
umulantbased estimator is shown to be asymptoti
ally normally distributedand 
onsistent and is shown to perform well in a small simulation study.Applying this method to data from U.S. and U.K. equity markets whenboth are open, reveals that two-way intera
tion between trades is sig-ni�
ant. Moreover, this intera
tion is 
hara
terised by both 
omplexshort term dynami
s and long memory, whi
h 
annot be 
aptured by
onventional exponential kernels.KeywordsPoint pro
esses, high-frequen
y data, 
onditional intensityJEL Classi�
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1 Introdu
tionPoint pro
esses have been su

essfully applied to a wide range of event typedata, and are a natural 
hoi
e within whi
h to 
onsider high frequen
y �nan-
ial market events. Sin
e the seminal papers of Engle and Russell (1998),Russell (1999) and Engle (2000) point pro
ess models, usually variants of theself-ex
iting model proposed by Hawkes (1971a, 1971b), have been developedand applied to �nan
ial data. An important feature of these models is thatthe 
ontemporaneous probability (or intensity) of an event in one point pro-
ess is informed by the history of events in all pro
esses via a kernel fun
tion.The kernel fun
tion provides a weighting of the relative importan
e of pastevents in determining the likelihood of a 
ontemporaneous event in the pro-
ess of interest.Existing appli
ations of point pro
ess models are predominantly based on anexponential kernel fun
tion (see, for example, Hauts
h, 2011). The motiva-tion for this 
hoi
e is the property that in exponential kernels, the memoryof past events de
ays at the same 
onstant rate irrespe
tive of when theseevents o

ur. There is, however, eviden
e to suggest that this property maynot be universally desirable. Aït-Sahalia, Laeven and Pelizzon (2014) pointout that 
lusters of large moves often do not o

ur exa
tly simultaneouslya
ross 
ountries and that the transmission of the initial sho
k may take sometime to be fully realised. Deo, Hurvi
h, Soulier and Wang (2009) show thattraditional kernels 
annot reprodu
e the long memory in the data that �nallypropagates into the realized volatility. Ba
ry and Muzy (2014) report thatpower-law kernels provide better performan
e than exponential kernels inmodelling transa
tions data. These observations suggest strongly that ker-nels based on exponential de
ay may not always be an appropriate 
hoi
e tomodel the 
omplex dynami
s in �nan
ial point pro
ess models for �nan
ial2



transa
tions data.This paper proposes a new approa
h to estimating the kernel fun
tion of amultivariate point pro
ess. It is shown that a multivariate mutually-ex
itingmodel 
an be 
hara
terised by �rst- and se
ond-order sample 
umulants.Furthermore, the kernel fun
tion of a mutually-ex
iting point pro
ess 
anbe estimated by solving a system of integral equations based on the se
ond-order 
umulants, without the need for strong parametri
 assumptions aboutits shape. This approa
h has a number of bene�ts, the most obvious beingthat the absen
e of a parametri
 form for the kernel fun
tion allows for more
omplex dynami
s. Moreover, obtaining the kernel by inverting the sys-tem of sample 
umulants is 
omputationally more robust than maximisinga likelihood fun
tion. The proposed 
umulant-based estimator is shown tobe 
onsistent and asymptoti
ally normally distributed with a varian
e thatonly depends on the 
orrelation stru
ture of the point pro
ess. The �nitesample performan
e of the estimator is demonstrated under simulation. Fur-thermore, it is shown that the maximum likelihood estimator of the kernelof a multivariate Hawkes model is a spe
ial 
ase of the 
umulant-based esti-mator, and 
onsequently the latter possesses the same asymptoti
 propertiesas the former.The development of the model is motivated by the desire to examine theintera
tions between transa
tions a
ross di�erent equity markets. A numberof studies have applied Hawkes models to establish links between di�erenttypes of high frequen
y events (trades and quotes for instan
e) for a parti
-ular asset (Bowsher, 2007; Large, 2007) or between the equity markets at adaily level (Aït-Sahalia, Ca
ho-Diaz and Laeven, 2015). The latter provides
lear eviden
e that the United States and European markets are stronglyinterrelated. This paper fo
uses on the time period 14:30 - 16:30 GMT when3



the sto
k markets in Chi
ago and London are both open for trading. Duringthese hours trading volume is parti
ularly high, and therefore this period 
anbe expe
ted to provide a wealth of information not only on trading a
tivitybut also on the intera
tion between these major international trading 
entres(see, for example, Hamao, Masulis and Ng (1990) who investigate pri
e dis-
overy). The primary �nding is that the impa
t of Chi
ago trades on Londontrades is stronger than the in�uen
e in the reverse dire
tion. Furthermore,a 
omparison of the semi-parametri
 kernel with its restri
ted exponential
ounterpart reveals that the intera
tion between markets is 
hara
terised byboth 
omplex short term dynami
s and long memory, features that 
annotbe 
aptured by the exponential kernel. This is a signi�
ant result whi
h sug-gests that the standard Hawkes model based on an exponential kernel mayunderestimate 
ross-e�e
ts between the markets.2 Modelling IntensityLet N = (N1, · · · , Nn) be an multivariate point pro
ess with asso
iated
ounting variables N(t) = (N1(t), · · · , Nn(t)) that 
ount the number ofevents in N o

urring in [0, t). Let N satisfy the following assumptions.A1. The pro
ess N is orderly, so that
P[Ni(t+ h)−Ni(t) > 1] = o(h) ∀i.A2. The pro
ess N is weakly stationary.A3. The pro
ess N is strongly mixing so that the distribution of the dif-ferential in
rements dNi(t) and dNj(s) behave as independent randomvariables for all values of i and j and values of t and s separated by asuitably large interval of time. 4



Given an n-variate mutually ex
iting point pro
ess a model for the 
ondi-tional intensity of Ni is spe
i�ed as
λi(t) = µi +

ˆ ∞

0

n∑

j=1

Gij(s)dNj(t− s), i = 1, ..., n, (1)in whi
h µi is an exogenous intensity, dNj is the di�erential of the 
ountingvariable for pro
ess Nj and Gij(t) is the kernel fun
tion to be estimated fromdata. In other words, the 
ontemporaneous intensity of the i-th pro
ess isgiven by a 
onstant and its own past history, Gii(s), and the history of allthe other pro
esses, Gij(s) where i 6= j. The diagonal terms in Gjj(s) arethe self-ex
iting elements with the terms Gji(s) 
apturing 
ross-ex
itationwhen i 6= j. The pro
ess de�ned by λ(t) is stationary if the spe
trum of thematrix ´∞0 G(s)ds lies within the unit ball.The standard treatment of the kernel fun
tion is to spe
ify an exponentialform given by
Gij(t) = αij exp(−βijt), (2)or to use Laguerre polynomials (Ogata, Akaike and Katsura, 1982; Ogata,1988)

Gij(t) =

m∑

k=0

α
(k)
ij Lk(t) exp(−βijt), (3)in whi
h αij and βij are parameters of the kernels and Laguerre polynomials

Lk(t) =

k∑

s=0

(
k

s

)
(−1)s

k!
ts, (4)de�ned on t > 0.To estimate the parameters governing the intensities in equation (1), theusual approa
h is to use maximum likelihood estimation applied to ea
hintensity. The log-likelihood fun
tion for the i-th pro
ess is given by (see5



Karr 1991, p.175)
logLi =

T∑

t=1

[
log(λi) dNi + (1− dNi) log(1− λi)

]
, (5)where parameters of the model appear impli
itly via the value(s) of λi. Com-putation of the maximum likelihood parameter estimates is performed viathe maximisation for ea
h day d separately. In this 
ase the likelihood fun
-tion is given by

logLi(θi) =

D∑

d=1

Td∑

t=1+Td−1

[
log(λdt) dNdt + (1− dNdt) log(1− λdt)

]
, (6)where D is the number of days and Td represents the number of events tohave o

urred up to and in
luding day d and T0 = 0. Note that equation(6) implies that ea
h day is an independent realisation of the same randompro
ess and overnight non-trading periods have no impa
t on intensity. Thelatter assumption 
an be relaxed by adding a link fun
tion to the intensityequation to 
apture the in�uen
e of overnight news (Bowsher, 2007).The major advantage of the maximum likelihood approa
h is that when thekernel is parameterised in a relatively parsimonious way, for example byadopting the exponential spe
i�
ation (2) or the Laguerre spe
i�
ation (3)with a small number of polynomials m in the expansion, the pro
edure isstraightforward to implement. Moreover, the maximum likelihood estimatorof the intensity model inherits the desirable properties of all maximum likeli-hood estimators. For example, Ogata (1978) establishes that the maximumlikelihood estimator for a simple, stationary, univariate point pro
ess modelis 
onsistent and asymptoti
ally normal under 
ertain regularity 
onditions.While the parameters of the exponential and Laguerre spe
i�
ations areeasy to estimate, they may, however, not be an appropriate �t for the data.More appealing is the idea of an unrestri
ted (semi-parametri
) memory6



kernel. The di�
ulty is that the dimensionality of the parameter spa
erapidly overpowers a standard optimisation algorithm.3 Estimation based on CumulantsThis se
tion develops a method for estimating a semi-parametri
 kernelmodel based on the 
al
ulation of 
umulants.3.1 First- and Se
ond-order CumulantsThe un
onditional intensity of the pro
ess Ni is de�ned as
Pi =

E[dNi(t)]

dt
. (7)Assumptions A1-A3 allow dNi(t) to be interpreted in terms of expe
tedvalues or probabilities (Brillinger, 1975). In other words, Pi h is the un
on-ditional probability of an event in (t, t+ h].The joint intensity of events inNi andNj separated by an interval of duration

u, also known as the se
ond-order produ
t density, Pij(u), is
Pij(u) =

E[dNi(t+ u)dNj(t)]

dt du
. (8)In this 
ase Pij(u)hk may be interpreted as the probability of an event in Niduring (t, t+ h] and simultaneously an event in Nj during (t+ u, t+ u+ k]for small values of h and k.If events i and j satisfy the mixing 
ondition A3, then in
rements be
omeindependent as u → ∞ whi
h means that

lim
|u|→∞

Pij(u) = PiPj. (9)7



This suggests that a measure of the strength with whi
h events in Ni and
Nj separated by an interval u di�er from independen
e is given by

Qij(u) = Pij(u)− PiPj , u 6= 0 , (10)where Qij(u) is known as the se
ond-order 
umulant. By virtue of as-sumption A3, the fun
tion Qij(u) → 0 as |u| → ∞. Moreover, it fol-lows dire
tly from the de�nition of the se
ond-order produ
t density that
Qij(−u) = Qj i(u), so that the 
umulant for negative lags is the transposeof the 
umulant for positive lags.The de�nition of the se
ond-order 
umulant 
an be extended to deal with
u = 0. Simultaneity implies a dis
ontinuity in Qij . By virtue of the fa
tthat every pro
ess is simultaneous with itself at u = 0, then

Qij(u) =


 Pij(u)− PiPj u 6= 0

Piδ(u) i = j , u = 0 ,where δ() denotes the Dira
 delta fun
tion. This methodology 
an be usedto test the independen
e of a series of events. When two point pro
esses Niand Nj are independent, then Qij(u) ≡ 0. In parti
ular, Qii(u) = 0 for aPoisson pro
ess when u 6= 0.Suppose t
(i)
r denote the times of events in the pro
ess Ni for a sample ofduration T , then de�ne

ΥT
ij(u) =

∑

r,s

I
(∣∣t(i)r − t(j)s − u

∣∣ ≤ η

2

)
,where I(·) is the indi
tor fun
tion and the summation is taken over all rele-vant values of r and s. Cox (1965) shows that

E[ΥT
ij(u)] ≈ ηTPij(u) (11)8



in whi
h η denotes a window length. Using equation (11) the se
ond-orderprodu
t density is estimated by
P̂ij(u) = ΥT

ij(u)/ηT, (12)whi
h together with equation (10) estimates the value of the 
umulant at
Q̂ij(u) = ΥT

ij(u)/ηT − P̂iP̂j . (13)Theorem 1: Distribution of P̂ 1/2
ij (u)Given A1-A3 and �xed values of η, then

√
T (P̂

1/2
ij (u)− P

1/2
ij (u))

d→ N

(
0, (4Tη)−1

)
.Moreover, P̂ij(u) and Q̂ij(u) are strongly 
onsistent. �Proof: Brillinger (1976, 2012).The importan
e of this result stems from the fa
t that the asymptoti
 vari-an
e of P̂ 1/2

ij (u) is independent of N . This property 
an be used to assign
on�den
e intervals for use in as
ertaining after what interval of time twopro
esses Ni and Nj behave approximately independently. Thus plots of thesquare roots of produ
t densities are useful for visualising periods of inter-dependen
e of pro
esses, and therefore providing information as to how toset the interval of time over whi
h the kernel fun
tion Gij may be regardedas being nonzero.3.2 EstimationEstimating the kernel fun
tion using equation (1) starts by re
ognising thatall 
ontributions from lags s > K are negligible. This results derives fromthe mixing 
ondition, A3, satis�ed by the 
omponent pro
esses of N whi
h9



ensures that Q(s) → 0 as |s| → ∞, and also from the fa
t that G(s) → 0 as
s → ∞. Therefore it is 
onvenient to rearrange equation (1) into the form

Q(w)−G(w)D −
ˆ K

0
G(s)Q(w − s) ds =

ˆ ∞

K
G(s)Q(w − s) ds, (14)in whi
hD = diag(P1, · · · , Pn) is the (n×n) diagonal matrix of un
onditionalintensities. It is understood in subsequent analysis that the integral on theleft hand side of equation (14) will be approximated by a quadrature, forexample

ˆ T

0
f(x) dx =

m∑

j=0

γjf(sj) , (15)where 0 = s0 < s1 < · · · < sm = T are the nodes at whi
h f(x) is to beevaluated and γ0, · · · , γm are the weights asso
iated with these nodes. Theright hand side of this equation will then assume the role of an error termwith Frobenius norm satisfying
∥∥∥
ˆ ∞

T
G(s)Q(w − s) ds

∥∥∥
2

F
=

n∑

p,q=1

( ˆ ∞

T

n∑

i=1

Gpi(s)Qqi(w − s) ds
)2

≤
n∑

p,q=1

( ˆ ∞

T

[ n∑

i=1

G2
pi(s)

]1/2 [ n∑

i=1

Q2
qi(w − s)

]1/2
ds
)2

≤
n∑

p,q=1

ˆ ∞

T

[ n∑

i=1

G2
pi(s)

]
ds

ˆ ∞

T

[ n∑

i=1

Q2
qi(w − s)

]
ds

=

ˆ ∞

T

∥∥∥G(s)
∥∥∥
2

F
ds

ˆ ∞

T

∥∥∥Q(w − s)
∥∥∥
2

F
ds

≤
ˆ ∞

T

∥∥∥G(s)
∥∥∥
2

F
ds

ˆ ∞

0

∥∥∥Q(s)
∥∥∥
2

F
ds .Consequently, the error term 
an be made arbitrarily small provided theFrobenius norm of Q(s) is square-integrable over R+ and that the 
onver-gen
e of G(s) to zero as s → ∞ is su�
iently strong so as to ensure thatthe Frobenius norm of G is square integrable over (T,∞). Assuming these10




onditions are satis�ed, the kernel fun
tion G(s) is ideally 
hosen to satisfy
h(w) =

∥∥∥Q(w)−G(w)D −
ˆ T

0
G(s)Q(w − s) ds

∥∥∥ = 0for all w ∈ (0, T ). However, when the integral is approximated by the quadra-ture (15), the ideal obje
tive is una
hievable for all values of w, and insteadthe best out
ome o

urs when G0, · · · , Gm are 
hosen to make h(sk) = 0 for
k = 0, · · · ,m, that is, G0, · · · , Gm satisfy

Q(sk)−G(sk)D −
m∑

j=0

γjG(sj)Q(sk − sj) = 0 , k = 0, · · · ,m. (16)Estimation pro
eeds in the following way. First, use equation (13) to esti-mate the 
umulant matrix Q(t), then solve the system (14) to estimate thekernel G(t). Finally, 
al
ulate the ve
tor of exogenous intensities µ(t) using
µ(t) = (I− ||G(t)||)Λ(t), (17)in whi
h I is the identity matrix, || · || denotes the L1 norm of a matrix, and

Λ = E[λ(t)]. Deo, Hurvi
h and Lu (2006) propose an alternative way toestimate the deterministi
 
omponent µ(t) using regression in the frequen
ydomain. An alternative pro
edure for estimating the kernel fun
tion G(t),proposed by Ba
ry, Dayri and Muzy (2012), requires the memory kernel tobe symmetri
, while in this paper this assumption in not required.3.3 Asymptoti
 properties of the 
umulant based estimatorGiven an estimate of kernel G(t), large sample properties of the 
umulantbased estimator 
an be investigated. First, equation (16) 
an be rewrittenas
Q(t) = G ◦ (δ(t)I +Q(t)), t > 0,

= G ◦Q(t)
(18)11



in whi
h I is the unit matrix and ◦ is the Fourier 
onvolution. Equation (18)is analogous to the Yule-Walker system that relates kernels G(t) with the
umulant matri
es Q(t) as
Γu−1[G(1), ..., G(u)]

′

= [Q̂(1), ..., Q̂(u)]
′

, (19)
Γu−1 =




Q̂(0) . . . . . . Q̂(u− 1)... ...... . . . ...
Q̂

′

(u− 1) . . . . . . Q̂(0)




.Under assumption A2, Γu−1 is a non-singular matrix so that system (19) hasa unique solution. In this 
ase matri
es G(j) 
an be 
omputed from Λ andthe 
umulant density matri
es Q(j).Theorem 2: Consisten
yLet N be a point pro
ess de�ned in equation (1) satisfying A1-A3. The
umulant based estimator of G, namely Ĝ, sais�es Ĝij → Gij in probabilityas T → ∞. �Proof: AppendixThe asymptoti
 distribution of the 
umulant based estimator of a mutuallyex
iting pro
ess is given in the following theorem.Theorem 3: Asymptoti
 normalityGiven 
onditions A1-A3, a 
umulant based estimator of a point pro
ess Nis asymptoti
ally distributed as
√
T (Ĝ−G)

d→ N

(
0s2 ,Ω

′

ΣΩ
)
,in whi
h 0s is a ve
tor of s zeros, Σ(i, j) = Cov(V̂ (i), V̂ (j)), V̂ = [ve
(Γ̂u−1),ve
(Q̂u)]

′, ve
 is the 
olumn sta
king operator of a matrix, Ĝ = ve
(Ĝ),
Ω

′

= − [Γ(1)Is, ...,Γ(s)Is]
(
(Γ−1

s )
′ ⊗ Γ−1

s

)
[Is2 0s2×s]+

[
0s×s2 Γ−1

s

], ⊗ is the12



Krone
ker produ
t, and s = nu. �Proof: AppendixAn important impli
ation of Theorem 3 is that the asymptoti
 properties ofthe 
umulant estimator Ĝ are de�ned by the �rst and se
ond order 
har-a
teristi
s of pro
ess N and a parametri
 spe
i�
ation of the kernel is notrequired. This result 
an be exploited to show asymptoti
 normality of max-imum likelihood estimators as a spe
ial 
ase. Let realisations of N be asample from the k-dimensional exponential family with density
pθ(x) = c(θ)a(x) exp(θ

′

t(x)), (20)where a and t = (t1, ..., tk) are known fun
tions on the sample spa
e and θ isa parameter. The log-likelihood fun
tion ℓθ(x) = log pθ(x) 
an be di�erenti-ated (see e.g. Van der Vaart, 2000) with respe
t to θ. Hen
e, the likelihoodequations ∑ ℓ̇θ(Xi) = 0 
an be represented as the system of k equations
1

n

s∑

i=1

t(Xi) = Eθ t(X).Thus, the maximum likelihood estimators of kernels G are 
umulant estima-tors, whi
h is formalised in the following Lemma.Lemma 1: Asymptoti
 properties of exponential familiesLet N be a point pro
ess de�ned in equation (1), satisfying A1-A3, and
Ĝ be the 
umulant based estimator of G. Asymptoti
 properties of thelog-likelihood estimators of Ĝ depend on the fun
tion e(θ) = Eθ t(X). Bydi�erentiating Eθ t(X) under the expe
tation sign, its derivative matri
es aregiven by

ėθ = Covθ t(X),in whi
h the 
ovarian
e matri
es 
an be estimated from 
umulants Qij . �Proof: Appendix 13



Note that the log-likelihood fun
tion, de�ned in equation (5) and parame-terised by exponential kernels, is represented by a Poisson distribution whi
his part of the exponential family (20) and therefore asymptoti
 normalityof estimates of a multivariate Hawkes model follows dire
tly from Lemma1. This extends the univariate results of Ogata (1978) to a multivariate
ase, namely that the maximum likelihood estimator for a simple, station-ary, multi-variate point pro
ess model is 
onsistent and asymptoti
ally nor-mal. Moreover, Theorem 3 and Lemma 1 
on�rm an unproved 
onje
tureof Bowsher (2007) that the estimator of the Hawkes model is asymptoti
allynormal.4 Simulation ExperimentsA simulation exer
ise was 
ondu
ted in whi
h the point pro
ess models withintensities
λ(t) = µ+ α

ˆ ∞

0
e−βs dN(t− s), (21)

λ(t) = µ+

ˆ ∞

0

m∑

k=1

αkt
k−1 exp(−βt) dN(t− s) (22)were simulated and estimated. Ea
h simulation exer
ise involved 200 in-dependent repli
ations of models (21) and (22) with parameter values µ =

0.001, α = 0.003 and β = 0.02 and m = 5, α1 = 0.2, α2 = −0.0503,
α3 = −0.0452, α4 = −0.0166, α5 = 0.0022. With these parameter val-ues, the simulated pro
esses in (21) have mean rate 0.0012, or on averageone event every 800 realisations, while the simulated pro
esses (21) withthe Laguerre kernel have mean rate 0.0010, or on average one event every1000 realisations. Trials of length 250,000, 500,000, 1,000,000, 2,000,000 and4,000,000 uniformly spa
ed realisations were run.14



Table 1 reports the mean squared error (MSE) for the model mean in equa-tions (21) and (22). The same sequen
es of trials are used to estimate thesimulated kernels assuming a memory of 100 lags and applying the 
umulantbased pro
edure proposed earlier. As expe
ted, the MSE for both modelssystemati
ally de
reases when the number of trials grow. The rate of 
onver-gen
e is 
onsistent with the results reported in the previous se
tion. Overall,the exponential kernel is estimated more a

urately.Table 1: The mean squared error of kernel estimates from the model withexponential and Laguerre kernels de�ned in equations (21) and (22). Val-ues are multiplied by 10,000 and reported for 250,000, 500,000, 1,000,000,2,000,000 and 4,000,000 independent trials.Exponential kernel Laguerre kernel
250, 000 0.0276 0.0533

500, 000 0.0159 0.0233

1, 000, 000 0.0055 0.0152

2, 000, 000 0.0029 0.0071

4, 000, 000 0.0015 0.0032While a simulated pro
ess with 4,000,000 trials has similar 
hara
teristi
sto models that will be dis
ussed in the empiri
al se
tion, it is interesting tovisualise the respe
tive kernels for this 
ase. These kernels are plotted inFigure 1 at lag 100 with 5% 
on�den
e intervals. Only 2 estimated valuesfor the Laguerre kernel and 4 values for the exponential kernel lie outside the
on�den
e bounds, whi
h 
on�rms the a

ura
y of the proposed method.
15
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Figure 1: Kernel estimates for the simulated model de�ned in equations(21) and (22) with 4,000,000 independent trials were s
aled by 1000. Con-�den
e intervals are represented by ±1.96× standard errors.5 Data and preliminary analysisTrading data for both the S&P 500 E-mini Index futures (traded on theChi
ago Mer
antile Ex
hange) and FTSE 100 Index futures (traded on theLondon Sto
k Ex
hange) 
ontra
ts were downloaded from the ThomsonReuters Ti
k History database. Trades are re
orded at millise
ond time-stamps with an asso
iated trade pri
e and volume. The data 
overs theperiod 3 January 2012 to 30 June 2012 for the times 14:30 to 16:25 (GMT),Monday to Friday, a period during normal trading hours when both marketsare open and trading is a
tive.Consider Figure 2 whi
h shows the average number of trades per minute forthe period 14:30 to 16:25 (GMT). It is 
lear from Figure 2 that trading a
-tivity is higher around the opening of trading in Chi
ago (14.30 GMT), andaround 15.00 GMT when most U.S. ma
roe
onomi
 announ
ements o

ur,a �nding 
onsistent with Be
ker, Finnerty and Friedman (1995). However,the te
hniques proposed here to analyse the intera
tion between the markets16



requires that the intensity of trading a
tivity be relatively 
onstant. There-fore only data from the period 15.10 to 16.10 GMT will be 
onsidered, astrading intensity in both markets is relatively 
onstant during this period.Restri
ting the sample to this time period means that 
ontamination frommarkets opening or ma
roe
onomi
 announ
ements is avoided.
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Figure 2: Number of trades per minute related to respe
tive sto
kindi
es. Time in GMT.The o

urren
e times of trades are mapped onto (0,∞) for ea
h trading dayin the same manner as Bowsher (2007). Two �lters are applied to ensure thevalidity of the trade data. The ranges of the S&P 500 and FTSE 100 weretaken to be [1000, 2000] and [5000, 8000] respe
tively in this investigation. Asmall number of trades with pri
es lying outside these range were removed.Additionally, a small number of trades with pri
es not at the minimum ti
k17



size ($0.25 for the S&P 500 and ¿0.50 for the FTSE 100), or zero volume, orbetween the best bid-ask pri
es or with negative spreads were also removedfrom the �nal data set. Finally, trades with the same time stamp and pri
eare treated as one event with an a

umulated number of transa
tions.Trade durationsNumber of durations 1533037Mean duration 258S&P 500 Standard deviation 469Minimum 1Maximum 13716Number of durations 279530Mean duration 1415FTSE 100 Standard deviation 2283Minimum 1Maximum 38920Table 2: Des
riptive statisti
s for the durations between tradeevents for the S&P 500 and FTSE 100. The period is 3 January2012 to 30 June 2012. The durations are measured in millise
onds.
Summary statisti
s of the durations between trades for the �nal data set arepresented in Table 2. This shows that the intensity of trading in Chi
ago isgreater and the average duration between trades in the S&P 500 
ontra
tsis more than 5 times shorter than that for the FTSE 100. In addition, boththe volatility of the durations and the maximum duration is greater in theFTSE 
ontra
ts. The produ
t density estimator of Brillinger (1976) is usedto examine the auto
orrelation, or persisten
e in the trade point pro
esses.This estimator is given by

√
P̂ij(u) ∼ N

(√
Pij(u), (4T )

−1
) (23)18



in whi
h Pij(u) is the se
ond order produ
t density between events of type
i and type j at a lag u and T is the sample size. The parameter estimateshave a 
onstant varian
e, whi
h is used for setting 
on�den
e intervals totest the hypothesis of independent 
ounting pro
esses Ni and Nj . In this
ase, the 95% 
on�den
e limits for √P̂ij(u) are

√
P̂iP̂j ± 1.96(4T )−1/2, (24)in whi
h P̂i and P̂j are the rates of the pro
esses Ni and Nj respe
tively. Ifthe estimated values lie inside the upper and lower 
on�den
e intervals, it
an be 
onsidered eviden
e of the independen
e of the 
ounting pro
esses Niand Nj . Plots of the square roots of produ
t densities at lag u will identifythe region of lags for whi
h intera
tions between trades are signi�
ant.The auto
orrelations1 in trades in both markets, represented by the esti-mates of the square root of produ
t densities from equations (23) and (24),are shown in Figure 3. It is 
lear that S&P 500 trades are self-ex
iting ex-hibiting memory of around 10 minutes. The FTSE trades are less persistent,exhibiting memory out to around 5 minutes. Estimates of 
ross-
orrelationbetween the series of trades based on equation (23) are shown in Figure 4 andreveal a signi�
ant degree of dependen
e between the trades in ea
h market.Positive (negative) lags in this 
ase relate to S&P500 (FTSE) trades lead-ing trades in the other market. Signi�
ant 
ross-
orrelations at positive andnegative lags indi
ate that trades in both markets are strongly interrelated,an important result motivating a deeper investigation into the intera
tionbetween trades.1In this se
tion the term auto
orrelation is used inter
hangeably for a lead-lag rela-tionship.

19
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(b) FTSE 100 tradesFigure 3: Estimates of the square root of the produ
t density from equation(23) for T = 3600000 are reported. The dashed horizontal lines are theestimated asymptoti
 values with the upper and lower 95% 
on�den
e limitsunder the hypothesis of independen
e. Lags are measured in minutes. Zerolags are ex
luded for illustration purposes.
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e. A zero lag is ex
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6 Empiri
al appli
ationThe preliminary analysis from the previous se
tion shows that trades inboth markets are strongly interrelated through 
omplex short-term dynami
sand long term memory. The main task is now to quantify this relationshipwithout assuming an exponential memory kernel. This task is a
hieved byusing the numeri
al pro
edure from Se
tion 3 to estimate the multivariate
onditional intensity model
λ(t) = µ+

ˆ ∞

0
G(s) dN(t− s) (25)with

G(t) =

[
Gs

us Gc
uk

Gc
us Gs

uk

]
, (26)in whi
h Gs

us(t) and Gs
uk(t) 
apture the self ex
iting e�e
ts of trades inea
h market, while Gc

us(t) and Gc
uk(t) 
apture the 
ross ex
itation from theS&P500 and from the FTSE 
ontra
ts respe
tively. A distinguishing featureof this model is its ability to 
apture bi-dire
tional intera
tions betweentrades from ea
h market.Given a pair of re
ords of o

urren
e times of S&P 500 and FTSE, {ti ∈

Ius} and {tj ∈ Iuk} respe
tively, and the exponential kernel spe
i�
ation inequation (2), the likelihood fun
tion in equation (5) 
an be rewritten as
logLT (θ) =

∑

ti∈Ius

log(µus + αs
usR

s
us(i) + αc

ukR
c
uk(i))

− µusT − αs
us

βs
us

∑

ti∈Ius

(1− exp(−βs
us(T − ti))−

αc
uk

βc
uk

∑

tj∈Iuk

(1− exp(−βc
uk(T − tj))

− µukT − αc
us

βc
us

∑

ti∈Ius

(1− exp(−βc
us(T − ti))−

αs
uk

βs
uk

∑

tj∈Iuk

(1− exp(−βs
uk(T − tj))

−
∑

tj∈Iuk

log(µuk + αc
usR

c
us(j) + αs

ukR
s
uk(j)), (27)21



where
Rs

us(i) = exp(−(ti − ti−1)β
s
us)(1 +Rs

us(i− 1)),

Rc
us(j) = exp(−(tj − tj−1)β

c
us)(R

c
us(j − 1)) +

∑

i′ :tj−1≤t
i
′<tj

exp(−(tj − ti′ )β
c
us),

Rc
uk(i) = exp(−(ti − ti−1)β

c
uk)(R

c
uk(i− 1)) +

∑

j
′
:ti−1≤t

j
′<ti

exp(−(ti − tj′ )β
c
uk),

Rs
uk(j) = exp(−(tj − tj−1)β

s
uk)(1 +Rs

uk(j − 1)).Table 3: Coe�
ient estimates of the Hawkes model (25). Parameter esti-mates (top) and t-statisti
s (bottom) are reported in ea
h 
ell. Coe�
ientsthat are signi�
ant at the 5% level are marked (*).
λus(t) λuk(t)

α̂sus 0.0176∗
(4.78)

α̂suk 0.0059∗
(4.61)

β̂sus 0.0410∗
(4.52)

β̂suk 0.0173∗
(5.17)

α̂
uk 0.0073∗
(3.28)

α̂
us 0.0079∗
(5.72)

β̂
uk 0.0216∗
(3.62)

β̂
us 0.0196∗
(2.88)

µ̂us 0.0022∗
(4.58)

µ̂uk 0.0005∗
(3.77)Coe�
ient estimates for the multivariate intensity model de�ned in equa-tions (25) and (26), are presented in Table 3. All 
oe�
ients are signi�
ant,revealing 
omplex intera
tion within, and between the two markets. Thee�e
t of self-ex
itation, 
aptured by the 
oe�
ients αs and βs, is strongerin the S&P500 market. Moreover, the 
oe�
ient αc

us and αc
uk, 
apturingthe 
ross e�e
ts between the Chi
ago and London equity markets, are verysimilar in magnitude.In order to assess the impa
t of a trade event on the respe
tive intensities, theestimated kernels from equation (26) are plotted in Figure 5. An interesting22
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Figure 5: Exponential kernel estimates for thetrade models de�ned in equations (25) and (26).observation is that the e�e
ts from Chi
ago are stronger within the shortintervals, while the impa
t from the London market is more signi�
ant at alonger horizon. This result 
on�rms the �nding of Huth and Abergel (2014)that the most liquid assets in terms of high trading turnover, whi
h are theS&P500 
ontra
ts in this 
ase, tend to lead the others at short horizons.Results using the simple Hawkes model revels a signi�
ant intera
tion be-tween the trades in both markets. In order to explore the question of whetheror not the exponential kernel is too restri
tive a spe
i�
ation, the semi-parametri
 kernel together with the 
umulant-based estimation pro
edurewill now be applied to the same data.Consider the model de�ned by equation (25) without assuming the ker-nel fun
tion to be exponential. The kernel matri
es G(s) in equation (26)are now estimated using the algorithm des
ribed in Se
tion 3. The semi-parametri
 kernel estimates are then 
ompared with the estimates of the
23



Laguerre kernels2
Gij(t) =

4∑

k=0

α
(k)
ij Lk(t) exp(−βijt). (28)Table 4: Coe�
ient estimates of the intensity model from equation (25) withLaguerre kernels from equation (28) are estimated using the maximum likelihoodapproa
h. Parameter estimates and t-statisti
s in parenthesis are reported in ea
h
ell. Cal
ulations use m = 4 Laguerre polynomials.US↔US UK↔UK US→UK UK→US

α̂(0) 0.5142∗
(3.03)

0.0190∗
(17.9)

0.0071∗
(75.6)

0.0066∗
(52.3)

α̂(1) −0.6703∗
(4.52)

−0.0037∗
(9.40)

0.0003∗
(10.7)

0.0001∗
(4.18)

α̂(2) 0.3461∗
(2.05)

0.0003∗
(7.05)

0.0001∗
(6.84)

0.0001∗
(14.9)

α̂(3) −0.0756∗
(2.04)

−0.0001∗
(5.32)

−0.0001∗
(11.6)

−0.0001∗
(15.3)

α̂(4) 0.0059∗
(2.14)

0.0001∗
(4.01)

0.0001∗
(21.6)

0.0001∗
(19.3)

β̂ 0.6144∗
(17.3)

0.0710∗
(13.9)

0.0564∗
(174)

0.0553∗
(106)The estimates of model (25) with the Laguerre kernels from equation (28)are presented in Table 4. The �rst and se
ond 
olumns of Table 4 
ontainestimates of the self-ex
iting kernels, while the third and fourth 
olumns rep-resent 
ross-ex
iting e�e
ts from Chi
ago and London respe
tively. All the
oe�
ients are signi�
ant, whi
h 
on�rms that all �ve Laguerre polynomials
apture dynami
s of trading intensity that 
annot be modelled by the simpleexponential model.2Ogata, Akaike and Katsura, (1982) give empiri
al arguments in favour of parametri
Laguerre kernels rather than exponential kernels. For this reason, the performan
e ofLaguerre kernels is 
ompared with the semi-parametri
 estimates. The deterministi
 term

µ is important for non-stationary models, where it 
an 
apture the diurnal patterns (seee.g. Engle and Russell, 1998; and Bowsher and Meeks, 2008). However, this term is notreported as the models dis
ussed here deal with stationary data.24
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Figure 6: Kernel estimates for the trades model de�ned in equations (25)and (26). E�e
ts from Chi
ago are presented in the �rst 
olumn and fromLondon - se
ond 
olumn.The self-ex
iting e�e
ts reveal 
omplex dynami
s in both London and Chi
ago.In parti
ular, the 
oe�
ients α̂(0) are positive and α̂(1) are negative, whi
hmeans that in the short run the kernels de
ay and then rise in the longer25



term. The 
ross-ex
iting e�e
ts are 
hara
terised by signi�
ant 
oe�
ients
α(k) supporting the 
onje
ture dis
ussed earlier that the kernels do not dieout within 100 millise
onds.To 
ompare the Laguerre kernels from Table 4 with the 
orresponding semi-parametri
 kernels, both their estimates are presented in Figure 6. Thesemi-parametri
 self-ex
iting kernels show a periodi
 pattern: every 10 and25 millise
onds there is a spike in the self-ex
iting responses. In the 
ase ofChi
ago, both the Laguerre and unrestri
ted kernels de
ay then peak around20 millise
onds. After this, the Laguerre de
ays to zero qui
kly whereas theunrestri
ted kernel exhibits periodi
 behaviour. The same pattern is evi-dent in the 
ase of self-ex
itation in London trading though the e�e
t isnot as pronoun
ed. The 
ross-ex
iting kernels, however, exhibit quite dif-ferent shapes. While the kernel 
apturing the e�e
t of Chi
ago trading onthe London market exhibits slow 
ontinual de
ay, the 
orresponding kernelfun
tion des
ribing the impa
t of London trading on the Chi
ago markethas a 
lear peak around 20 millise
onds, and thereafter exhibits 
ontinualde
ay almost identi
al to that of the former. In this 
ase, both the La-guerre and unrestri
ted kernels exhibit very similar patterns. Overall, themore �exible kernels are 
apturing e�e
ts that are more 
omplex than 
anbe identi�ed with simple exponential kernels. To 
ompare the goodness of�t of the two kernels, residuals of the estimated model (25), de�ned as ares
aled point pro
ess after applying a random time 
hange 
an be 
om-pared.3 The sum of the squared residuals from the Laguerre kernel, 781.1,and the semi-parametri
 kernel, 329.4, show that the added �exibility of theunrestri
ted semi-parametri
 kernel is of bene�t in explaining the dynami
sof the trades in the two markets. Overall, these results show that 
omplex3A 
omparison of the residuals n unit-rate independent Poisson pro
esses is des
ribedin Appendix E. 26



intera
tions between trades in Chi
ago and London are evident during theshort period of overlap in trading. Given the methods proposed here, it isfound that unrestri
ted semi-parametri
 kernels o�er a better explanation ofthe dynami
s in trading a
tivity.7 Con
lusionThis paper proposes a novel approa
h for estimating multivariate point pro-
ess models without restri
tive assumptions regarding the shape of the mem-ory kernel. The kernel of a point pro
ess 
an be estimated from data viathe numeri
al solution of a system of integral equations. At its 
ore, thestrategy involves 
al
ulation of se
ond-order 
umulant fun
tions from eventdata. Asymptoti
 properties of the proposed estimator are presented and its�nite-sample performan
e investigated in a small simulation exer
ise. It isalso shown that a standard maximum likelihood estimator of a multivariateHawkes pro
ess has the same large sample properties as the 
umulant basedestimator.As an empiri
al illustration of the e�
a
y of the new approa
h, an investiga-tion of trade events for the time when both the Chi
ago and London marketsare open is undertaken. The results show that the impa
t of Chi
ago trad-ing on the London market is stronger than in the reverse dire
tion. Froma methodologi
al perspe
tive, one of the main 
on
lusions to emerge is thatthe adoption of a memory fun
tion 
hara
terised by exponential de
ay istoo restri
tive. In this appli
ation at least, the semi-parametri
 estimatorsprovides a superior �t to the short term dynami
s and longer term memoryof the trade intera
tions.
27



Appendi
esA Asymptoti
 properties of produ
t densitiesThe analysis begins with the assumption that P̂NN (u) is asymptoti
allyGaussian distributed with mean value µ = PNN (u) and varian
e σ2 =

(βT )−1PNN (u). Let X = P̂NN (u), then it is ne
essary to 
ompute theasymptoti
 mean and varian
e of √X given that x ∼ N(µ, σ2).Mean The mean value of √X is by de�nition
E[X1/2] =

ˆ ∞

0

√
x

σ
√
2π

e−(x−µ)2/2σ2

dx =

ˆ ∞

−µ
(z + µ)1/2

1

σ
√
2π

e−z2/2σ2

dz .In the limit as T → ∞ the integrand takes the limiting value (z+µ)1/2 δ(z),where δ(z) is Dira
's Delta fun
tion. Thus E[P̂NN (u)] tends asymptoti
allyto √PNN (u).Varian
e The varian
e of √X is by de�nition
V[X1/2] =

ˆ ∞

0
(
√
x−√

µ)2
1

σ
√
2π

e−(x−µ)2/2σ2

dx

=

ˆ ∞

−µ
(
√
z + µ−√

µ)2
1

σ
√
2π

e−z2/2σ2

dz

=

ˆ ∞

−µ

z2

(
√
z + µ+

√
µ)2

1

σ
√
2π

e−z2/2σ2

dz .The 
hange of variable z = σ y now gives
β T V[X1/2] =

PNN (u)√
2π

ˆ ∞

−µ/σ

y2

(
√
σ y + µ+

√
µ)2

e−y2/2 dy .Now let T → ∞, or equivalently let σ → 0 to obtain
lim
T→∞

β T V[X1/2] =
PNN (u)√

2π

ˆ ∞

−∞

y2

4µ
e−y2/2 dy =

1

428



after noting that µ = PNN (u), and 
ompletes the proof of the asymptoti
properties of P 1/2
NN (u).B Theorem 2A proof follows from the results of Theorem 1 about 
onsisten
y of Pij(u)and Qij(u).C Theorem 3As follows from Theorem 1, as T → ∞ and β = 1,




Q̂(0)...
Q̂(u)


 ∼ N







Q(0)...
Q(u)


 , T−1VQ


 , (A1)where VQ is a matrix of respe
tive produ
t densities.Consider the sample 
ovarian
e matrix, Γ̂u−1, and the matrix of se
ond-order
umulants, Q̂u. Let

V̂ΓQ =

[ ve
(Γ̂u−1)ve
(Q̂u)

]
(A2)be a ve
tor with n2(u2+u) elements. Then, using the result (A1), it is foundthat

V̂ΓQ =

[ ve
(Γ̂u−1)ve
(Q̂u)

]
∼ N

([ ve
(Γu−1)ve
(Qu)

]
, T−1ΣΓQ

)
, (A3)where ΣΓQ is the n2(u2 + u)× n2(u2 + u) 
ovarian
e matrix of V̂ΓQ,

ΣΓQ(i, j) = Cov(V̂ΓQ(i), V̂ΓQ(j)),29



de�ned for i, j = 1, ..., n2(u2 + u).Now the Delta method (Van der Vaart, 2000) is used to demonstrate asymp-toti
 normality of G. Let ϕ be the fun
tion from Rn2(u2+u) into Rn2u de�nedby
ϕ(X) = (unve
n2×u2+u(X)C1)

−1(unve
n2×u2+u(X)C2),where X is a ve
tor with n2(u2 + u) elements,
C1 =

[
Inu

0
′

n×nu

]
, C2 =

[
0nu×n

In

]
,are a (nu + n) × nu matrix and a matrix with n2(u + 1) elements, respe
-tively, 0p×q is a matrix of zeros and unve
p×q(X) is the inverse of the ve
operator de�ned su
h as unve
p×q(ve
(A)) = A (Further, the subs
ript ofthis operator is omitted for simpli
ity).Note that for V̂ΓQ de�ned in (A2)

ϕ(V̂ΓQ) = Γ̂−1
u−1Q̂u = Ĝ.Then, by the Delta method,

Ĝ ∼ N(G, T−1D
′

ΣΓQD),where Ĝ = ve
(Ĝ) and
D =

(
∂ϕ

∂X

)

|X=V̂ΓQ

=

(
∂ϕ

∂X ′

)′

|X=V̂ΓQis the n2(u2+u)×n2u derivative matrix of the fun
tion ϕ, de�ned as follows.Let f : Rp → Rq be a ve
tor valued fun
tion with ve
tor variable. The p× qmatrix derivative of f is de�ned as
∂f

∂X
=

(
∂f

∂X ′

)′

=




∂f1
∂X1

. . . ∂f1
∂Xp... . . . ...

∂fq
∂X1

. . .
∂fq
∂Xp




′

,30



in order to meet the needs of the Ja
obian matrix.Furthermore, ϕ(X) 
an be represented as the produ
t of two matri
es,
ϕ(X) = M−1

1 (X)M2(X). Then, by using the produ
t rule, it is found that
(

∂ϕ

∂X ′

)′

=

(
∂(M−1

1 M2)

∂X ′

)′

=

(
(M

′

2 ⊗ Inu)
∂ve
(M−1

1 )

∂X ′
+ (I1 ⊗M−1

1 )
∂ve
(M2)

∂X ′

)′

.Now, using the matrix derivative of an inverse matrix,
∂ve
(M−1

1 )

∂X ′
= −

(
(M−1

1 )
′ ⊗M−1

1

) ∂ve
(M1)

∂X ′
,repla
ing M1 by unve
(X)C1, and using the properties of ve
 and unve
operators (Neude
ker, 1969) and the derivative matrix rule of f su
h that

f = AX, where A is a 
onstant matrix, it is found that
∂ve
(M−1

1 )

∂X ′
= −

(
((unve
(X)C1)

−1)
′ ⊗ (unve
(X)C1)

−1
) ∂ve
(unve
(X)C1)

∂X ′

= −
(
((unve
(X)C1)

−1)
′ ⊗ (unve
(X)C1)

−1
) ∂(C

′

1 ⊗ Inu)X

∂X ′

= −
(
((unve
(X)C1)

−1)
′ ⊗ (unve
(X)C1)

−1
)
(C

′

1 ⊗ Inu) .Applying the same rule to M2,
∂ve
(M2)

∂X ′
=

∂(C
′

2 ⊗ Inu)X

∂X ′
= (C

′

2 ⊗ Inu).Then,
(

∂ϕ

∂X
′

)′

=
(
− ((unve
(X)C2)

′ ⊗ Inu)

(((unve
(X)C1)
−1)

′ ⊗ (unve
(X)C1)
−1)(C

′

1 ⊗ Inu)

+ (Inu ⊗ (unve
(X)C1)
−1)(C

′

2 ⊗ Inu)
)′

.31



Therefore,
D

′

= −(γ
′ ⊗ Inu)((Γ

−1
nu )

′ ⊗ Γ−1
nu)(C

′

1 ⊗ Inu) + (I1 ⊗ Γ−1
nu )(C

′

2 ⊗ Inu)

= − [Γ(1)Is, ...,Γ(s)Is]
(
(Γ−1

s )
′ ⊗ Γ−1

s

)
[Is2 0s2×s] +

[
0s×s2 Γ−1

s

]
,where γ = ve
(Q), s = nu and the theorem follows.D Lemma 1As follows from Lemma 4.5 of Van der Vaart (2000), the ve
tor of partialderivatives (the s
ore fun
tion) satis�es

ℓ̇θ(x) =
ċ

c
(θ) + t(x) = t(x)− Eθt(X).The se
ond equality shows that s
ore fun
tions have zero means. It 
anbe formally established by di�erentiating the identity ´ pθds = 1 under theintegral sign. Combining the Lemma 4.5 of Van der Vaart (2000) and theLeibniz rule gives

∂

∂θi

ˆ

pθds =

ˆ

∂c(θ)

∂θi
a(x)exp(θ′

t(x))ds(x)+

ˆ

c(θ)a(x)ti(x)exp(θ′

t(x))ds(x).The left side is zero and the equation 
an be rewritten as 0 = ċ/c(θ)+Eθt(X),whi
h proves the lemma.E A goodness of �t testIn order to perform a goodness of �t test of the estimated model (25) one
an use the following 
orollary 14.6.V. of Daley and Vere-Jones (2008):Corollary 1 (Random time 
hange4) Let N denote a nonterminating mul-tivariate point pro
ess with 
omponents Ni, i = 1, ..., n and F-
onditional4See Daley and Vere-Jones (2008) for the proof.32



intensity λi(t). Let a(t, i) =
´ t
0 λi(s)ds and denote by Ñ the res
aled pointpro
ess de�ned to have a point at {a(t, i), i} if and only if the ith 
omponentof N 
ontains a point at t. Then Ñ is a stationary 
ompound Poisson pro
esswith unit intensity.Equivalently, if the res
aling is performed so that Ñ has a point at (a(t, i), i)whenever the original pro
ess has a point at (t, i), then the resultant pro
ess
onsists of n independent, unit-rate Poisson pro
esses.The 
orollary 1 allows to transform a point pro
ess N to n unit-rate inde-pendent Poisson pro
esses. This result 
an be applied to the pooled pro
essre
eived by superposing all events for two markets. The residuals of thispro
ess 
an be de�ned as

epj =

ˆ tj+1

tj

2∑

i=1

λi(s)ds, (j = 0, 1, ...),where epj is the Poisson pro
ess with intensity 2. Given the estimates ofkernel Gij(·) and exogenous intensity µ, the res
aled residuals5 epj 
an beplotted in the unite square with the 
on�den
e lines of the standard normaldistribution ±Z1−α/2/
√
T , in whi
h T is the length of the sample. If theempiri
al values epj falls outside the 
on�den
e bands it is an eviden
e ofunsatisfa
tory �t.Given the estimates Gij(·) of the model (25), a goodness of �t test of themodel with Laguerre and semi-parametri
 kernels was 
ondu
ted. The good-ness of �t results indi
ate a poor performan
e of the model with the Laguerrekernel 
omparing to the semi-parametri
 model.5Before plotting the residuals e

p
j should be multiplied by the intensity of the pooledpro
ess, whi
h is equal to 2.
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