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1 IntrodutionPoint proesses have been suessfully applied to a wide range of event typedata, and are a natural hoie within whih to onsider high frequeny �nan-ial market events. Sine the seminal papers of Engle and Russell (1998),Russell (1999) and Engle (2000) point proess models, usually variants of theself-exiting model proposed by Hawkes (1971a, 1971b), have been developedand applied to �nanial data. An important feature of these models is thatthe ontemporaneous probability (or intensity) of an event in one point pro-ess is informed by the history of events in all proesses via a kernel funtion.The kernel funtion provides a weighting of the relative importane of pastevents in determining the likelihood of a ontemporaneous event in the pro-ess of interest.Existing appliations of point proess models are predominantly based on anexponential kernel funtion (see, for example, Hautsh, 2011). The motiva-tion for this hoie is the property that in exponential kernels, the memoryof past events deays at the same onstant rate irrespetive of when theseevents our. There is, however, evidene to suggest that this property maynot be universally desirable. Aït-Sahalia, Laeven and Pelizzon (2014) pointout that lusters of large moves often do not our exatly simultaneouslyaross ountries and that the transmission of the initial shok may take sometime to be fully realised. Deo, Hurvih, Soulier and Wang (2009) show thattraditional kernels annot reprodue the long memory in the data that �nallypropagates into the realized volatility. Bary and Muzy (2014) report thatpower-law kernels provide better performane than exponential kernels inmodelling transations data. These observations suggest strongly that ker-nels based on exponential deay may not always be an appropriate hoie tomodel the omplex dynamis in �nanial point proess models for �nanial2



transations data.This paper proposes a new approah to estimating the kernel funtion of amultivariate point proess. It is shown that a multivariate mutually-exitingmodel an be haraterised by �rst- and seond-order sample umulants.Furthermore, the kernel funtion of a mutually-exiting point proess anbe estimated by solving a system of integral equations based on the seond-order umulants, without the need for strong parametri assumptions aboutits shape. This approah has a number of bene�ts, the most obvious beingthat the absene of a parametri form for the kernel funtion allows for moreomplex dynamis. Moreover, obtaining the kernel by inverting the sys-tem of sample umulants is omputationally more robust than maximisinga likelihood funtion. The proposed umulant-based estimator is shown tobe onsistent and asymptotially normally distributed with a variane thatonly depends on the orrelation struture of the point proess. The �nitesample performane of the estimator is demonstrated under simulation. Fur-thermore, it is shown that the maximum likelihood estimator of the kernelof a multivariate Hawkes model is a speial ase of the umulant-based esti-mator, and onsequently the latter possesses the same asymptoti propertiesas the former.The development of the model is motivated by the desire to examine theinterations between transations aross di�erent equity markets. A numberof studies have applied Hawkes models to establish links between di�erenttypes of high frequeny events (trades and quotes for instane) for a parti-ular asset (Bowsher, 2007; Large, 2007) or between the equity markets at adaily level (Aït-Sahalia, Caho-Diaz and Laeven, 2015). The latter provideslear evidene that the United States and European markets are stronglyinterrelated. This paper fouses on the time period 14:30 - 16:30 GMT when3



the stok markets in Chiago and London are both open for trading. Duringthese hours trading volume is partiularly high, and therefore this period anbe expeted to provide a wealth of information not only on trading ativitybut also on the interation between these major international trading entres(see, for example, Hamao, Masulis and Ng (1990) who investigate prie dis-overy). The primary �nding is that the impat of Chiago trades on Londontrades is stronger than the in�uene in the reverse diretion. Furthermore,a omparison of the semi-parametri kernel with its restrited exponentialounterpart reveals that the interation between markets is haraterised byboth omplex short term dynamis and long memory, features that annotbe aptured by the exponential kernel. This is a signi�ant result whih sug-gests that the standard Hawkes model based on an exponential kernel mayunderestimate ross-e�ets between the markets.2 Modelling IntensityLet N = (N1, · · · , Nn) be an multivariate point proess with assoiatedounting variables N(t) = (N1(t), · · · , Nn(t)) that ount the number ofevents in N ourring in [0, t). Let N satisfy the following assumptions.A1. The proess N is orderly, so that
P[Ni(t+ h)−Ni(t) > 1] = o(h) ∀i.A2. The proess N is weakly stationary.A3. The proess N is strongly mixing so that the distribution of the dif-ferential inrements dNi(t) and dNj(s) behave as independent randomvariables for all values of i and j and values of t and s separated by asuitably large interval of time. 4



Given an n-variate mutually exiting point proess a model for the ondi-tional intensity of Ni is spei�ed as
λi(t) = µi +

ˆ ∞

0

n∑

j=1

Gij(s)dNj(t− s), i = 1, ..., n, (1)in whih µi is an exogenous intensity, dNj is the di�erential of the ountingvariable for proess Nj and Gij(t) is the kernel funtion to be estimated fromdata. In other words, the ontemporaneous intensity of the i-th proess isgiven by a onstant and its own past history, Gii(s), and the history of allthe other proesses, Gij(s) where i 6= j. The diagonal terms in Gjj(s) arethe self-exiting elements with the terms Gji(s) apturing ross-exitationwhen i 6= j. The proess de�ned by λ(t) is stationary if the spetrum of thematrix ´∞0 G(s)ds lies within the unit ball.The standard treatment of the kernel funtion is to speify an exponentialform given by
Gij(t) = αij exp(−βijt), (2)or to use Laguerre polynomials (Ogata, Akaike and Katsura, 1982; Ogata,1988)

Gij(t) =

m∑

k=0

α
(k)
ij Lk(t) exp(−βijt), (3)in whih αij and βij are parameters of the kernels and Laguerre polynomials

Lk(t) =

k∑

s=0

(
k

s

)
(−1)s

k!
ts, (4)de�ned on t > 0.To estimate the parameters governing the intensities in equation (1), theusual approah is to use maximum likelihood estimation applied to eahintensity. The log-likelihood funtion for the i-th proess is given by (see5



Karr 1991, p.175)
logLi =

T∑

t=1

[
log(λi) dNi + (1− dNi) log(1− λi)

]
, (5)where parameters of the model appear impliitly via the value(s) of λi. Com-putation of the maximum likelihood parameter estimates is performed viathe maximisation for eah day d separately. In this ase the likelihood fun-tion is given by

logLi(θi) =

D∑

d=1

Td∑

t=1+Td−1

[
log(λdt) dNdt + (1− dNdt) log(1− λdt)

]
, (6)where D is the number of days and Td represents the number of events tohave ourred up to and inluding day d and T0 = 0. Note that equation(6) implies that eah day is an independent realisation of the same randomproess and overnight non-trading periods have no impat on intensity. Thelatter assumption an be relaxed by adding a link funtion to the intensityequation to apture the in�uene of overnight news (Bowsher, 2007).The major advantage of the maximum likelihood approah is that when thekernel is parameterised in a relatively parsimonious way, for example byadopting the exponential spei�ation (2) or the Laguerre spei�ation (3)with a small number of polynomials m in the expansion, the proedure isstraightforward to implement. Moreover, the maximum likelihood estimatorof the intensity model inherits the desirable properties of all maximum likeli-hood estimators. For example, Ogata (1978) establishes that the maximumlikelihood estimator for a simple, stationary, univariate point proess modelis onsistent and asymptotially normal under ertain regularity onditions.While the parameters of the exponential and Laguerre spei�ations areeasy to estimate, they may, however, not be an appropriate �t for the data.More appealing is the idea of an unrestrited (semi-parametri) memory6



kernel. The di�ulty is that the dimensionality of the parameter spaerapidly overpowers a standard optimisation algorithm.3 Estimation based on CumulantsThis setion develops a method for estimating a semi-parametri kernelmodel based on the alulation of umulants.3.1 First- and Seond-order CumulantsThe unonditional intensity of the proess Ni is de�ned as
Pi =

E[dNi(t)]

dt
. (7)Assumptions A1-A3 allow dNi(t) to be interpreted in terms of expetedvalues or probabilities (Brillinger, 1975). In other words, Pi h is the unon-ditional probability of an event in (t, t+ h].The joint intensity of events inNi andNj separated by an interval of duration

u, also known as the seond-order produt density, Pij(u), is
Pij(u) =

E[dNi(t+ u)dNj(t)]

dt du
. (8)In this ase Pij(u)hk may be interpreted as the probability of an event in Niduring (t, t+ h] and simultaneously an event in Nj during (t+ u, t+ u+ k]for small values of h and k.If events i and j satisfy the mixing ondition A3, then inrements beomeindependent as u → ∞ whih means that

lim
|u|→∞

Pij(u) = PiPj. (9)7



This suggests that a measure of the strength with whih events in Ni and
Nj separated by an interval u di�er from independene is given by

Qij(u) = Pij(u)− PiPj , u 6= 0 , (10)where Qij(u) is known as the seond-order umulant. By virtue of as-sumption A3, the funtion Qij(u) → 0 as |u| → ∞. Moreover, it fol-lows diretly from the de�nition of the seond-order produt density that
Qij(−u) = Qj i(u), so that the umulant for negative lags is the transposeof the umulant for positive lags.The de�nition of the seond-order umulant an be extended to deal with
u = 0. Simultaneity implies a disontinuity in Qij . By virtue of the fatthat every proess is simultaneous with itself at u = 0, then

Qij(u) =


 Pij(u)− PiPj u 6= 0

Piδ(u) i = j , u = 0 ,where δ() denotes the Dira delta funtion. This methodology an be usedto test the independene of a series of events. When two point proesses Niand Nj are independent, then Qij(u) ≡ 0. In partiular, Qii(u) = 0 for aPoisson proess when u 6= 0.Suppose t
(i)
r denote the times of events in the proess Ni for a sample ofduration T , then de�ne

ΥT
ij(u) =

∑

r,s

I
(∣∣t(i)r − t(j)s − u

∣∣ ≤ η

2

)
,where I(·) is the inditor funtion and the summation is taken over all rele-vant values of r and s. Cox (1965) shows that

E[ΥT
ij(u)] ≈ ηTPij(u) (11)8



in whih η denotes a window length. Using equation (11) the seond-orderprodut density is estimated by
P̂ij(u) = ΥT

ij(u)/ηT, (12)whih together with equation (10) estimates the value of the umulant at
Q̂ij(u) = ΥT

ij(u)/ηT − P̂iP̂j . (13)Theorem 1: Distribution of P̂ 1/2
ij (u)Given A1-A3 and �xed values of η, then

√
T (P̂

1/2
ij (u)− P

1/2
ij (u))

d→ N

(
0, (4Tη)−1

)
.Moreover, P̂ij(u) and Q̂ij(u) are strongly onsistent. �Proof: Brillinger (1976, 2012).The importane of this result stems from the fat that the asymptoti vari-ane of P̂ 1/2

ij (u) is independent of N . This property an be used to assignon�dene intervals for use in asertaining after what interval of time twoproesses Ni and Nj behave approximately independently. Thus plots of thesquare roots of produt densities are useful for visualising periods of inter-dependene of proesses, and therefore providing information as to how toset the interval of time over whih the kernel funtion Gij may be regardedas being nonzero.3.2 EstimationEstimating the kernel funtion using equation (1) starts by reognising thatall ontributions from lags s > K are negligible. This results derives fromthe mixing ondition, A3, satis�ed by the omponent proesses of N whih9



ensures that Q(s) → 0 as |s| → ∞, and also from the fat that G(s) → 0 as
s → ∞. Therefore it is onvenient to rearrange equation (1) into the form

Q(w)−G(w)D −
ˆ K

0
G(s)Q(w − s) ds =

ˆ ∞

K
G(s)Q(w − s) ds, (14)in whihD = diag(P1, · · · , Pn) is the (n×n) diagonal matrix of unonditionalintensities. It is understood in subsequent analysis that the integral on theleft hand side of equation (14) will be approximated by a quadrature, forexample

ˆ T

0
f(x) dx =

m∑

j=0

γjf(sj) , (15)where 0 = s0 < s1 < · · · < sm = T are the nodes at whih f(x) is to beevaluated and γ0, · · · , γm are the weights assoiated with these nodes. Theright hand side of this equation will then assume the role of an error termwith Frobenius norm satisfying
∥∥∥
ˆ ∞

T
G(s)Q(w − s) ds

∥∥∥
2

F
=

n∑

p,q=1

( ˆ ∞

T

n∑

i=1

Gpi(s)Qqi(w − s) ds
)2

≤
n∑

p,q=1

( ˆ ∞

T

[ n∑

i=1

G2
pi(s)

]1/2 [ n∑

i=1

Q2
qi(w − s)

]1/2
ds
)2

≤
n∑

p,q=1

ˆ ∞

T

[ n∑

i=1

G2
pi(s)

]
ds

ˆ ∞

T

[ n∑

i=1

Q2
qi(w − s)

]
ds

=

ˆ ∞

T

∥∥∥G(s)
∥∥∥
2

F
ds

ˆ ∞

T

∥∥∥Q(w − s)
∥∥∥
2

F
ds

≤
ˆ ∞

T

∥∥∥G(s)
∥∥∥
2

F
ds

ˆ ∞

0

∥∥∥Q(s)
∥∥∥
2

F
ds .Consequently, the error term an be made arbitrarily small provided theFrobenius norm of Q(s) is square-integrable over R+ and that the onver-gene of G(s) to zero as s → ∞ is su�iently strong so as to ensure thatthe Frobenius norm of G is square integrable over (T,∞). Assuming these10



onditions are satis�ed, the kernel funtion G(s) is ideally hosen to satisfy
h(w) =

∥∥∥Q(w)−G(w)D −
ˆ T

0
G(s)Q(w − s) ds

∥∥∥ = 0for all w ∈ (0, T ). However, when the integral is approximated by the quadra-ture (15), the ideal objetive is unahievable for all values of w, and insteadthe best outome ours when G0, · · · , Gm are hosen to make h(sk) = 0 for
k = 0, · · · ,m, that is, G0, · · · , Gm satisfy

Q(sk)−G(sk)D −
m∑

j=0

γjG(sj)Q(sk − sj) = 0 , k = 0, · · · ,m. (16)Estimation proeeds in the following way. First, use equation (13) to esti-mate the umulant matrix Q(t), then solve the system (14) to estimate thekernel G(t). Finally, alulate the vetor of exogenous intensities µ(t) using
µ(t) = (I− ||G(t)||)Λ(t), (17)in whih I is the identity matrix, || · || denotes the L1 norm of a matrix, and

Λ = E[λ(t)]. Deo, Hurvih and Lu (2006) propose an alternative way toestimate the deterministi omponent µ(t) using regression in the frequenydomain. An alternative proedure for estimating the kernel funtion G(t),proposed by Bary, Dayri and Muzy (2012), requires the memory kernel tobe symmetri, while in this paper this assumption in not required.3.3 Asymptoti properties of the umulant based estimatorGiven an estimate of kernel G(t), large sample properties of the umulantbased estimator an be investigated. First, equation (16) an be rewrittenas
Q(t) = G ◦ (δ(t)I +Q(t)), t > 0,

= G ◦Q(t)
(18)11



in whih I is the unit matrix and ◦ is the Fourier onvolution. Equation (18)is analogous to the Yule-Walker system that relates kernels G(t) with theumulant matries Q(t) as
Γu−1[G(1), ..., G(u)]

′

= [Q̂(1), ..., Q̂(u)]
′

, (19)
Γu−1 =




Q̂(0) . . . . . . Q̂(u− 1)... ...... . . . ...
Q̂

′

(u− 1) . . . . . . Q̂(0)




.Under assumption A2, Γu−1 is a non-singular matrix so that system (19) hasa unique solution. In this ase matries G(j) an be omputed from Λ andthe umulant density matries Q(j).Theorem 2: ConsistenyLet N be a point proess de�ned in equation (1) satisfying A1-A3. Theumulant based estimator of G, namely Ĝ, sais�es Ĝij → Gij in probabilityas T → ∞. �Proof: AppendixThe asymptoti distribution of the umulant based estimator of a mutuallyexiting proess is given in the following theorem.Theorem 3: Asymptoti normalityGiven onditions A1-A3, a umulant based estimator of a point proess Nis asymptotially distributed as
√
T (Ĝ−G)

d→ N

(
0s2 ,Ω

′

ΣΩ
)
,in whih 0s is a vetor of s zeros, Σ(i, j) = Cov(V̂ (i), V̂ (j)), V̂ = [ve(Γ̂u−1),ve(Q̂u)]

′, ve is the olumn staking operator of a matrix, Ĝ = ve(Ĝ),
Ω

′

= − [Γ(1)Is, ...,Γ(s)Is]
(
(Γ−1

s )
′ ⊗ Γ−1

s

)
[Is2 0s2×s]+

[
0s×s2 Γ−1

s

], ⊗ is the12



Kroneker produt, and s = nu. �Proof: AppendixAn important impliation of Theorem 3 is that the asymptoti properties ofthe umulant estimator Ĝ are de�ned by the �rst and seond order har-ateristis of proess N and a parametri spei�ation of the kernel is notrequired. This result an be exploited to show asymptoti normality of max-imum likelihood estimators as a speial ase. Let realisations of N be asample from the k-dimensional exponential family with density
pθ(x) = c(θ)a(x) exp(θ

′

t(x)), (20)where a and t = (t1, ..., tk) are known funtions on the sample spae and θ isa parameter. The log-likelihood funtion ℓθ(x) = log pθ(x) an be di�erenti-ated (see e.g. Van der Vaart, 2000) with respet to θ. Hene, the likelihoodequations ∑ ℓ̇θ(Xi) = 0 an be represented as the system of k equations
1

n

s∑

i=1

t(Xi) = Eθ t(X).Thus, the maximum likelihood estimators of kernels G are umulant estima-tors, whih is formalised in the following Lemma.Lemma 1: Asymptoti properties of exponential familiesLet N be a point proess de�ned in equation (1), satisfying A1-A3, and
Ĝ be the umulant based estimator of G. Asymptoti properties of thelog-likelihood estimators of Ĝ depend on the funtion e(θ) = Eθ t(X). Bydi�erentiating Eθ t(X) under the expetation sign, its derivative matries aregiven by

ėθ = Covθ t(X),in whih the ovariane matries an be estimated from umulants Qij . �Proof: Appendix 13



Note that the log-likelihood funtion, de�ned in equation (5) and parame-terised by exponential kernels, is represented by a Poisson distribution whihis part of the exponential family (20) and therefore asymptoti normalityof estimates of a multivariate Hawkes model follows diretly from Lemma1. This extends the univariate results of Ogata (1978) to a multivariatease, namely that the maximum likelihood estimator for a simple, station-ary, multi-variate point proess model is onsistent and asymptotially nor-mal. Moreover, Theorem 3 and Lemma 1 on�rm an unproved onjetureof Bowsher (2007) that the estimator of the Hawkes model is asymptotiallynormal.4 Simulation ExperimentsA simulation exerise was onduted in whih the point proess models withintensities
λ(t) = µ+ α

ˆ ∞

0
e−βs dN(t− s), (21)

λ(t) = µ+

ˆ ∞

0

m∑

k=1

αkt
k−1 exp(−βt) dN(t− s) (22)were simulated and estimated. Eah simulation exerise involved 200 in-dependent repliations of models (21) and (22) with parameter values µ =

0.001, α = 0.003 and β = 0.02 and m = 5, α1 = 0.2, α2 = −0.0503,
α3 = −0.0452, α4 = −0.0166, α5 = 0.0022. With these parameter val-ues, the simulated proesses in (21) have mean rate 0.0012, or on averageone event every 800 realisations, while the simulated proesses (21) withthe Laguerre kernel have mean rate 0.0010, or on average one event every1000 realisations. Trials of length 250,000, 500,000, 1,000,000, 2,000,000 and4,000,000 uniformly spaed realisations were run.14



Table 1 reports the mean squared error (MSE) for the model mean in equa-tions (21) and (22). The same sequenes of trials are used to estimate thesimulated kernels assuming a memory of 100 lags and applying the umulantbased proedure proposed earlier. As expeted, the MSE for both modelssystematially dereases when the number of trials grow. The rate of onver-gene is onsistent with the results reported in the previous setion. Overall,the exponential kernel is estimated more aurately.Table 1: The mean squared error of kernel estimates from the model withexponential and Laguerre kernels de�ned in equations (21) and (22). Val-ues are multiplied by 10,000 and reported for 250,000, 500,000, 1,000,000,2,000,000 and 4,000,000 independent trials.Exponential kernel Laguerre kernel
250, 000 0.0276 0.0533

500, 000 0.0159 0.0233

1, 000, 000 0.0055 0.0152

2, 000, 000 0.0029 0.0071

4, 000, 000 0.0015 0.0032While a simulated proess with 4,000,000 trials has similar haraterististo models that will be disussed in the empirial setion, it is interesting tovisualise the respetive kernels for this ase. These kernels are plotted inFigure 1 at lag 100 with 5% on�dene intervals. Only 2 estimated valuesfor the Laguerre kernel and 4 values for the exponential kernel lie outside theon�dene bounds, whih on�rms the auray of the proposed method.
15
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Figure 1: Kernel estimates for the simulated model de�ned in equations(21) and (22) with 4,000,000 independent trials were saled by 1000. Con-�dene intervals are represented by ±1.96× standard errors.5 Data and preliminary analysisTrading data for both the S&P 500 E-mini Index futures (traded on theChiago Merantile Exhange) and FTSE 100 Index futures (traded on theLondon Stok Exhange) ontrats were downloaded from the ThomsonReuters Tik History database. Trades are reorded at milliseond time-stamps with an assoiated trade prie and volume. The data overs theperiod 3 January 2012 to 30 June 2012 for the times 14:30 to 16:25 (GMT),Monday to Friday, a period during normal trading hours when both marketsare open and trading is ative.Consider Figure 2 whih shows the average number of trades per minute forthe period 14:30 to 16:25 (GMT). It is lear from Figure 2 that trading a-tivity is higher around the opening of trading in Chiago (14.30 GMT), andaround 15.00 GMT when most U.S. maroeonomi announements our,a �nding onsistent with Beker, Finnerty and Friedman (1995). However,the tehniques proposed here to analyse the interation between the markets16



requires that the intensity of trading ativity be relatively onstant. There-fore only data from the period 15.10 to 16.10 GMT will be onsidered, astrading intensity in both markets is relatively onstant during this period.Restriting the sample to this time period means that ontamination frommarkets opening or maroeonomi announements is avoided.
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Figure 2: Number of trades per minute related to respetive stokindies. Time in GMT.The ourrene times of trades are mapped onto (0,∞) for eah trading dayin the same manner as Bowsher (2007). Two �lters are applied to ensure thevalidity of the trade data. The ranges of the S&P 500 and FTSE 100 weretaken to be [1000, 2000] and [5000, 8000] respetively in this investigation. Asmall number of trades with pries lying outside these range were removed.Additionally, a small number of trades with pries not at the minimum tik17



size ($0.25 for the S&P 500 and ¿0.50 for the FTSE 100), or zero volume, orbetween the best bid-ask pries or with negative spreads were also removedfrom the �nal data set. Finally, trades with the same time stamp and prieare treated as one event with an aumulated number of transations.Trade durationsNumber of durations 1533037Mean duration 258S&P 500 Standard deviation 469Minimum 1Maximum 13716Number of durations 279530Mean duration 1415FTSE 100 Standard deviation 2283Minimum 1Maximum 38920Table 2: Desriptive statistis for the durations between tradeevents for the S&P 500 and FTSE 100. The period is 3 January2012 to 30 June 2012. The durations are measured in milliseonds.
Summary statistis of the durations between trades for the �nal data set arepresented in Table 2. This shows that the intensity of trading in Chiago isgreater and the average duration between trades in the S&P 500 ontratsis more than 5 times shorter than that for the FTSE 100. In addition, boththe volatility of the durations and the maximum duration is greater in theFTSE ontrats. The produt density estimator of Brillinger (1976) is usedto examine the autoorrelation, or persistene in the trade point proesses.This estimator is given by

√
P̂ij(u) ∼ N

(√
Pij(u), (4T )

−1
) (23)18



in whih Pij(u) is the seond order produt density between events of type
i and type j at a lag u and T is the sample size. The parameter estimateshave a onstant variane, whih is used for setting on�dene intervals totest the hypothesis of independent ounting proesses Ni and Nj . In thisase, the 95% on�dene limits for √P̂ij(u) are

√
P̂iP̂j ± 1.96(4T )−1/2, (24)in whih P̂i and P̂j are the rates of the proesses Ni and Nj respetively. Ifthe estimated values lie inside the upper and lower on�dene intervals, itan be onsidered evidene of the independene of the ounting proesses Niand Nj . Plots of the square roots of produt densities at lag u will identifythe region of lags for whih interations between trades are signi�ant.The autoorrelations1 in trades in both markets, represented by the esti-mates of the square root of produt densities from equations (23) and (24),are shown in Figure 3. It is lear that S&P 500 trades are self-exiting ex-hibiting memory of around 10 minutes. The FTSE trades are less persistent,exhibiting memory out to around 5 minutes. Estimates of ross-orrelationbetween the series of trades based on equation (23) are shown in Figure 4 andreveal a signi�ant degree of dependene between the trades in eah market.Positive (negative) lags in this ase relate to S&P500 (FTSE) trades lead-ing trades in the other market. Signi�ant ross-orrelations at positive andnegative lags indiate that trades in both markets are strongly interrelated,an important result motivating a deeper investigation into the interationbetween trades.1In this setion the term autoorrelation is used interhangeably for a lead-lag rela-tionship.
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6 Empirial appliationThe preliminary analysis from the previous setion shows that trades inboth markets are strongly interrelated through omplex short-term dynamisand long term memory. The main task is now to quantify this relationshipwithout assuming an exponential memory kernel. This task is ahieved byusing the numerial proedure from Setion 3 to estimate the multivariateonditional intensity model
λ(t) = µ+

ˆ ∞

0
G(s) dN(t− s) (25)with

G(t) =

[
Gs

us Gc
uk

Gc
us Gs

uk

]
, (26)in whih Gs

us(t) and Gs
uk(t) apture the self exiting e�ets of trades ineah market, while Gc

us(t) and Gc
uk(t) apture the ross exitation from theS&P500 and from the FTSE ontrats respetively. A distinguishing featureof this model is its ability to apture bi-diretional interations betweentrades from eah market.Given a pair of reords of ourrene times of S&P 500 and FTSE, {ti ∈

Ius} and {tj ∈ Iuk} respetively, and the exponential kernel spei�ation inequation (2), the likelihood funtion in equation (5) an be rewritten as
logLT (θ) =

∑

ti∈Ius

log(µus + αs
usR

s
us(i) + αc

ukR
c
uk(i))

− µusT − αs
us

βs
us

∑

ti∈Ius

(1− exp(−βs
us(T − ti))−

αc
uk

βc
uk

∑

tj∈Iuk

(1− exp(−βc
uk(T − tj))

− µukT − αc
us

βc
us

∑

ti∈Ius

(1− exp(−βc
us(T − ti))−

αs
uk

βs
uk

∑

tj∈Iuk

(1− exp(−βs
uk(T − tj))

−
∑

tj∈Iuk

log(µuk + αc
usR

c
us(j) + αs

ukR
s
uk(j)), (27)21



where
Rs

us(i) = exp(−(ti − ti−1)β
s
us)(1 +Rs

us(i− 1)),

Rc
us(j) = exp(−(tj − tj−1)β

c
us)(R

c
us(j − 1)) +

∑

i′ :tj−1≤t
i
′<tj

exp(−(tj − ti′ )β
c
us),

Rc
uk(i) = exp(−(ti − ti−1)β

c
uk)(R

c
uk(i− 1)) +

∑

j
′
:ti−1≤t

j
′<ti

exp(−(ti − tj′ )β
c
uk),

Rs
uk(j) = exp(−(tj − tj−1)β

s
uk)(1 +Rs

uk(j − 1)).Table 3: Coe�ient estimates of the Hawkes model (25). Parameter esti-mates (top) and t-statistis (bottom) are reported in eah ell. Coe�ientsthat are signi�ant at the 5% level are marked (*).
λus(t) λuk(t)

α̂sus 0.0176∗
(4.78)

α̂suk 0.0059∗
(4.61)

β̂sus 0.0410∗
(4.52)

β̂suk 0.0173∗
(5.17)

α̂uk 0.0073∗
(3.28)

α̂us 0.0079∗
(5.72)

β̂uk 0.0216∗
(3.62)

β̂us 0.0196∗
(2.88)

µ̂us 0.0022∗
(4.58)

µ̂uk 0.0005∗
(3.77)Coe�ient estimates for the multivariate intensity model de�ned in equa-tions (25) and (26), are presented in Table 3. All oe�ients are signi�ant,revealing omplex interation within, and between the two markets. Thee�et of self-exitation, aptured by the oe�ients αs and βs, is strongerin the S&P500 market. Moreover, the oe�ient αc

us and αc
uk, apturingthe ross e�ets between the Chiago and London equity markets, are verysimilar in magnitude.In order to assess the impat of a trade event on the respetive intensities, theestimated kernels from equation (26) are plotted in Figure 5. An interesting22
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Figure 5: Exponential kernel estimates for thetrade models de�ned in equations (25) and (26).observation is that the e�ets from Chiago are stronger within the shortintervals, while the impat from the London market is more signi�ant at alonger horizon. This result on�rms the �nding of Huth and Abergel (2014)that the most liquid assets in terms of high trading turnover, whih are theS&P500 ontrats in this ase, tend to lead the others at short horizons.Results using the simple Hawkes model revels a signi�ant interation be-tween the trades in both markets. In order to explore the question of whetheror not the exponential kernel is too restritive a spei�ation, the semi-parametri kernel together with the umulant-based estimation proedurewill now be applied to the same data.Consider the model de�ned by equation (25) without assuming the ker-nel funtion to be exponential. The kernel matries G(s) in equation (26)are now estimated using the algorithm desribed in Setion 3. The semi-parametri kernel estimates are then ompared with the estimates of the
23



Laguerre kernels2
Gij(t) =

4∑

k=0

α
(k)
ij Lk(t) exp(−βijt). (28)Table 4: Coe�ient estimates of the intensity model from equation (25) withLaguerre kernels from equation (28) are estimated using the maximum likelihoodapproah. Parameter estimates and t-statistis in parenthesis are reported in eahell. Calulations use m = 4 Laguerre polynomials.US↔US UK↔UK US→UK UK→US

α̂(0) 0.5142∗
(3.03)

0.0190∗
(17.9)

0.0071∗
(75.6)

0.0066∗
(52.3)

α̂(1) −0.6703∗
(4.52)

−0.0037∗
(9.40)

0.0003∗
(10.7)

0.0001∗
(4.18)

α̂(2) 0.3461∗
(2.05)

0.0003∗
(7.05)

0.0001∗
(6.84)

0.0001∗
(14.9)

α̂(3) −0.0756∗
(2.04)

−0.0001∗
(5.32)

−0.0001∗
(11.6)

−0.0001∗
(15.3)

α̂(4) 0.0059∗
(2.14)

0.0001∗
(4.01)

0.0001∗
(21.6)

0.0001∗
(19.3)

β̂ 0.6144∗
(17.3)

0.0710∗
(13.9)

0.0564∗
(174)

0.0553∗
(106)The estimates of model (25) with the Laguerre kernels from equation (28)are presented in Table 4. The �rst and seond olumns of Table 4 ontainestimates of the self-exiting kernels, while the third and fourth olumns rep-resent ross-exiting e�ets from Chiago and London respetively. All theoe�ients are signi�ant, whih on�rms that all �ve Laguerre polynomialsapture dynamis of trading intensity that annot be modelled by the simpleexponential model.2Ogata, Akaike and Katsura, (1982) give empirial arguments in favour of parametriLaguerre kernels rather than exponential kernels. For this reason, the performane ofLaguerre kernels is ompared with the semi-parametri estimates. The deterministi term

µ is important for non-stationary models, where it an apture the diurnal patterns (seee.g. Engle and Russell, 1998; and Bowsher and Meeks, 2008). However, this term is notreported as the models disussed here deal with stationary data.24
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Figure 6: Kernel estimates for the trades model de�ned in equations (25)and (26). E�ets from Chiago are presented in the �rst olumn and fromLondon - seond olumn.The self-exiting e�ets reveal omplex dynamis in both London and Chiago.In partiular, the oe�ients α̂(0) are positive and α̂(1) are negative, whihmeans that in the short run the kernels deay and then rise in the longer25



term. The ross-exiting e�ets are haraterised by signi�ant oe�ients
α(k) supporting the onjeture disussed earlier that the kernels do not dieout within 100 milliseonds.To ompare the Laguerre kernels from Table 4 with the orresponding semi-parametri kernels, both their estimates are presented in Figure 6. Thesemi-parametri self-exiting kernels show a periodi pattern: every 10 and25 milliseonds there is a spike in the self-exiting responses. In the ase ofChiago, both the Laguerre and unrestrited kernels deay then peak around20 milliseonds. After this, the Laguerre deays to zero quikly whereas theunrestrited kernel exhibits periodi behaviour. The same pattern is evi-dent in the ase of self-exitation in London trading though the e�et isnot as pronouned. The ross-exiting kernels, however, exhibit quite dif-ferent shapes. While the kernel apturing the e�et of Chiago trading onthe London market exhibits slow ontinual deay, the orresponding kernelfuntion desribing the impat of London trading on the Chiago markethas a lear peak around 20 milliseonds, and thereafter exhibits ontinualdeay almost idential to that of the former. In this ase, both the La-guerre and unrestrited kernels exhibit very similar patterns. Overall, themore �exible kernels are apturing e�ets that are more omplex than anbe identi�ed with simple exponential kernels. To ompare the goodness of�t of the two kernels, residuals of the estimated model (25), de�ned as aresaled point proess after applying a random time hange an be om-pared.3 The sum of the squared residuals from the Laguerre kernel, 781.1,and the semi-parametri kernel, 329.4, show that the added �exibility of theunrestrited semi-parametri kernel is of bene�t in explaining the dynamisof the trades in the two markets. Overall, these results show that omplex3A omparison of the residuals n unit-rate independent Poisson proesses is desribedin Appendix E. 26



interations between trades in Chiago and London are evident during theshort period of overlap in trading. Given the methods proposed here, it isfound that unrestrited semi-parametri kernels o�er a better explanation ofthe dynamis in trading ativity.7 ConlusionThis paper proposes a novel approah for estimating multivariate point pro-ess models without restritive assumptions regarding the shape of the mem-ory kernel. The kernel of a point proess an be estimated from data viathe numerial solution of a system of integral equations. At its ore, thestrategy involves alulation of seond-order umulant funtions from eventdata. Asymptoti properties of the proposed estimator are presented and its�nite-sample performane investigated in a small simulation exerise. It isalso shown that a standard maximum likelihood estimator of a multivariateHawkes proess has the same large sample properties as the umulant basedestimator.As an empirial illustration of the e�ay of the new approah, an investiga-tion of trade events for the time when both the Chiago and London marketsare open is undertaken. The results show that the impat of Chiago trad-ing on the London market is stronger than in the reverse diretion. Froma methodologial perspetive, one of the main onlusions to emerge is thatthe adoption of a memory funtion haraterised by exponential deay istoo restritive. In this appliation at least, the semi-parametri estimatorsprovides a superior �t to the short term dynamis and longer term memoryof the trade interations.
27



AppendiesA Asymptoti properties of produt densitiesThe analysis begins with the assumption that P̂NN (u) is asymptotiallyGaussian distributed with mean value µ = PNN (u) and variane σ2 =

(βT )−1PNN (u). Let X = P̂NN (u), then it is neessary to ompute theasymptoti mean and variane of √X given that x ∼ N(µ, σ2).Mean The mean value of √X is by de�nition
E[X1/2] =

ˆ ∞

0

√
x

σ
√
2π

e−(x−µ)2/2σ2

dx =

ˆ ∞

−µ
(z + µ)1/2

1

σ
√
2π

e−z2/2σ2

dz .In the limit as T → ∞ the integrand takes the limiting value (z+µ)1/2 δ(z),where δ(z) is Dira's Delta funtion. Thus E[P̂NN (u)] tends asymptotiallyto √PNN (u).Variane The variane of √X is by de�nition
V[X1/2] =

ˆ ∞

0
(
√
x−√

µ)2
1

σ
√
2π

e−(x−µ)2/2σ2

dx

=

ˆ ∞

−µ
(
√
z + µ−√

µ)2
1

σ
√
2π

e−z2/2σ2

dz

=

ˆ ∞

−µ

z2

(
√
z + µ+

√
µ)2

1

σ
√
2π

e−z2/2σ2

dz .The hange of variable z = σ y now gives
β T V[X1/2] =

PNN (u)√
2π

ˆ ∞

−µ/σ

y2

(
√
σ y + µ+

√
µ)2

e−y2/2 dy .Now let T → ∞, or equivalently let σ → 0 to obtain
lim
T→∞

β T V[X1/2] =
PNN (u)√

2π

ˆ ∞

−∞

y2

4µ
e−y2/2 dy =

1

428



after noting that µ = PNN (u), and ompletes the proof of the asymptotiproperties of P 1/2
NN (u).B Theorem 2A proof follows from the results of Theorem 1 about onsisteny of Pij(u)and Qij(u).C Theorem 3As follows from Theorem 1, as T → ∞ and β = 1,




Q̂(0)...
Q̂(u)


 ∼ N







Q(0)...
Q(u)


 , T−1VQ


 , (A1)where VQ is a matrix of respetive produt densities.Consider the sample ovariane matrix, Γ̂u−1, and the matrix of seond-orderumulants, Q̂u. Let

V̂ΓQ =

[ ve(Γ̂u−1)ve(Q̂u)

]
(A2)be a vetor with n2(u2+u) elements. Then, using the result (A1), it is foundthat

V̂ΓQ =

[ ve(Γ̂u−1)ve(Q̂u)

]
∼ N

([ ve(Γu−1)ve(Qu)

]
, T−1ΣΓQ

)
, (A3)where ΣΓQ is the n2(u2 + u)× n2(u2 + u) ovariane matrix of V̂ΓQ,

ΣΓQ(i, j) = Cov(V̂ΓQ(i), V̂ΓQ(j)),29



de�ned for i, j = 1, ..., n2(u2 + u).Now the Delta method (Van der Vaart, 2000) is used to demonstrate asymp-toti normality of G. Let ϕ be the funtion from Rn2(u2+u) into Rn2u de�nedby
ϕ(X) = (unven2×u2+u(X)C1)

−1(unven2×u2+u(X)C2),where X is a vetor with n2(u2 + u) elements,
C1 =

[
Inu

0
′

n×nu

]
, C2 =

[
0nu×n

In

]
,are a (nu + n) × nu matrix and a matrix with n2(u + 1) elements, respe-tively, 0p×q is a matrix of zeros and unvep×q(X) is the inverse of the veoperator de�ned suh as unvep×q(ve(A)) = A (Further, the subsript ofthis operator is omitted for simpliity).Note that for V̂ΓQ de�ned in (A2)

ϕ(V̂ΓQ) = Γ̂−1
u−1Q̂u = Ĝ.Then, by the Delta method,

Ĝ ∼ N(G, T−1D
′

ΣΓQD),where Ĝ = ve(Ĝ) and
D =

(
∂ϕ

∂X

)

|X=V̂ΓQ

=

(
∂ϕ

∂X ′

)′

|X=V̂ΓQis the n2(u2+u)×n2u derivative matrix of the funtion ϕ, de�ned as follows.Let f : Rp → Rq be a vetor valued funtion with vetor variable. The p× qmatrix derivative of f is de�ned as
∂f

∂X
=

(
∂f

∂X ′

)′

=




∂f1
∂X1

. . . ∂f1
∂Xp... . . . ...

∂fq
∂X1

. . .
∂fq
∂Xp




′

,30



in order to meet the needs of the Jaobian matrix.Furthermore, ϕ(X) an be represented as the produt of two matries,
ϕ(X) = M−1

1 (X)M2(X). Then, by using the produt rule, it is found that
(

∂ϕ

∂X ′

)′

=

(
∂(M−1

1 M2)

∂X ′

)′

=

(
(M

′

2 ⊗ Inu)
∂ve(M−1

1 )

∂X ′
+ (I1 ⊗M−1

1 )
∂ve(M2)

∂X ′

)′

.Now, using the matrix derivative of an inverse matrix,
∂ve(M−1

1 )

∂X ′
= −

(
(M−1

1 )
′ ⊗M−1

1

) ∂ve(M1)

∂X ′
,replaing M1 by unve(X)C1, and using the properties of ve and unveoperators (Neudeker, 1969) and the derivative matrix rule of f suh that

f = AX, where A is a onstant matrix, it is found that
∂ve(M−1

1 )

∂X ′
= −

(
((unve(X)C1)

−1)
′ ⊗ (unve(X)C1)

−1
) ∂ve(unve(X)C1)

∂X ′

= −
(
((unve(X)C1)

−1)
′ ⊗ (unve(X)C1)

−1
) ∂(C

′

1 ⊗ Inu)X

∂X ′

= −
(
((unve(X)C1)

−1)
′ ⊗ (unve(X)C1)

−1
)
(C

′

1 ⊗ Inu) .Applying the same rule to M2,
∂ve(M2)

∂X ′
=

∂(C
′

2 ⊗ Inu)X

∂X ′
= (C

′

2 ⊗ Inu).Then,
(

∂ϕ

∂X
′

)′

=
(
− ((unve(X)C2)

′ ⊗ Inu)

(((unve(X)C1)
−1)

′ ⊗ (unve(X)C1)
−1)(C

′

1 ⊗ Inu)

+ (Inu ⊗ (unve(X)C1)
−1)(C

′

2 ⊗ Inu)
)′
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Therefore,
D

′

= −(γ
′ ⊗ Inu)((Γ

−1
nu )

′ ⊗ Γ−1
nu)(C

′

1 ⊗ Inu) + (I1 ⊗ Γ−1
nu )(C

′

2 ⊗ Inu)

= − [Γ(1)Is, ...,Γ(s)Is]
(
(Γ−1

s )
′ ⊗ Γ−1

s

)
[Is2 0s2×s] +

[
0s×s2 Γ−1

s

]
,where γ = ve(Q), s = nu and the theorem follows.D Lemma 1As follows from Lemma 4.5 of Van der Vaart (2000), the vetor of partialderivatives (the sore funtion) satis�es

ℓ̇θ(x) =
ċ

c
(θ) + t(x) = t(x)− Eθt(X).The seond equality shows that sore funtions have zero means. It anbe formally established by di�erentiating the identity ´ pθds = 1 under theintegral sign. Combining the Lemma 4.5 of Van der Vaart (2000) and theLeibniz rule gives

∂

∂θi

ˆ

pθds =

ˆ

∂c(θ)

∂θi
a(x)exp(θ′

t(x))ds(x)+

ˆ

c(θ)a(x)ti(x)exp(θ′

t(x))ds(x).The left side is zero and the equation an be rewritten as 0 = ċ/c(θ)+Eθt(X),whih proves the lemma.E A goodness of �t testIn order to perform a goodness of �t test of the estimated model (25) onean use the following orollary 14.6.V. of Daley and Vere-Jones (2008):Corollary 1 (Random time hange4) Let N denote a nonterminating mul-tivariate point proess with omponents Ni, i = 1, ..., n and F-onditional4See Daley and Vere-Jones (2008) for the proof.32



intensity λi(t). Let a(t, i) =
´ t
0 λi(s)ds and denote by Ñ the resaled pointproess de�ned to have a point at {a(t, i), i} if and only if the ith omponentof N ontains a point at t. Then Ñ is a stationary ompound Poisson proesswith unit intensity.Equivalently, if the resaling is performed so that Ñ has a point at (a(t, i), i)whenever the original proess has a point at (t, i), then the resultant proessonsists of n independent, unit-rate Poisson proesses.The orollary 1 allows to transform a point proess N to n unit-rate inde-pendent Poisson proesses. This result an be applied to the pooled proessreeived by superposing all events for two markets. The residuals of thisproess an be de�ned as

epj =

ˆ tj+1

tj

2∑

i=1

λi(s)ds, (j = 0, 1, ...),where epj is the Poisson proess with intensity 2. Given the estimates ofkernel Gij(·) and exogenous intensity µ, the resaled residuals5 epj an beplotted in the unite square with the on�dene lines of the standard normaldistribution ±Z1−α/2/
√
T , in whih T is the length of the sample. If theempirial values epj falls outside the on�dene bands it is an evidene ofunsatisfatory �t.Given the estimates Gij(·) of the model (25), a goodness of �t test of themodel with Laguerre and semi-parametri kernels was onduted. The good-ness of �t results indiate a poor performane of the model with the Laguerrekernel omparing to the semi-parametri model.5Before plotting the residuals e

p
j should be multiplied by the intensity of the pooledproess, whih is equal to 2.
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