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Abstract

A novel point process framework to examine the links between
transaction data across equity markets is proposed. Moving beyond a
simple exponential kernel specification, it is shown that the kernel ma-
trix can be estimated by solving a system of integral equations which
is uniquely characterised by second order cumulants. The cumulant
based estimator is shown to be asymptotically normally distributed
and consistent and is shown to perform well in a small simulation study.
Applying this method to data from U.S. and U.K. equity markets when
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nificant. Moreover, this interaction is characterised by both complex
short term dynamics and long memory, which cannot be captured by

conventional exponential kernels.
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1 Introduction

Point processes have been successfully applied to a wide range of event type
data, and are a natural choice within which to consider high frequency finan-
cial market events. Since the seminal papers of Engle and Russell (1998),
Russell (1999) and Engle (2000) point process models, usually variants of the
self-exciting model proposed by Hawkes (1971a, 1971b), have been developed
and applied to financial data. An important feature of these models is that
the contemporaneous probability (or intensity) of an event in one point pro-
cess is informed by the history of events in all processes via a kernel function.
The kernel function provides a weighting of the relative importance of past
events in determining the likelihood of a contemporaneous event in the pro-

cess of interest.

Existing applications of point process models are predominantly based on an
exponential kernel function (see, for example, Hautsch, 2011). The motiva-
tion for this choice is the property that in exponential kernels, the memory
of past events decays at the same constant rate irrespective of when these
events occur. There is, however, evidence to suggest that this property may
not be universally desirable. Ait-Sahalia, Laeven and Pelizzon (2014) point
out that clusters of large moves often do not occur exactly simultaneously
across countries and that the transmission of the initial shock may take some
time to be fully realised. Deo, Hurvich, Soulier and Wang (2009) show that
traditional kernels cannot reproduce the long memory in the data that finally
propagates into the realized volatility. Bacry and Muzy (2014) report that
power-law kernels provide better performance than exponential kernels in
modelling transactions data. These observations suggest strongly that ker-
nels based on exponential decay may not always be an appropriate choice to

model the complex dynamics in financial point process models for financial



transactions data.

This paper proposes a new approach to estimating the kernel function of a
multivariate point process. It is shown that a multivariate mutually-exciting
model can be characterised by first- and second-order sample cumulants.
Furthermore, the kernel function of a mutually-exciting point process can
be estimated by solving a system of integral equations based on the second-
order cumulants, without the need for strong parametric assumptions about
its shape. This approach has a number of benefits, the most obvious being
that the absence of a parametric form for the kernel function allows for more
complex dynamics. Moreover, obtaining the kernel by inverting the sys-
tem of sample cumulants is computationally more robust than maximising
a likelihood function. The proposed cumulant-based estimator is shown to
be consistent and asymptotically normally distributed with a variance that
only depends on the correlation structure of the point process. The finite
sample performance of the estimator is demonstrated under simulation. Fur-
thermore, it is shown that the maximum likelihood estimator of the kernel
of a multivariate Hawkes model is a special case of the cumulant-based esti-
mator, and consequently the latter possesses the same asymptotic properties

as the former.

The development of the model is motivated by the desire to examine the
interactions between transactions across different equity markets. A number
of studies have applied Hawkes models to establish links between different
types of high frequency events (trades and quotes for instance) for a partic-
ular asset (Bowsher, 2007; Large, 2007) or between the equity markets at a
daily level (Ait-Sahalia, Cacho-Diaz and Laeven, 2015). The latter provides
clear evidence that the United States and European markets are strongly

interrelated. This paper focuses on the time period 14:30 - 16:30 GMT when



the stock markets in Chicago and London are both open for trading. During
these hours trading volume is particularly high, and therefore this period can
be expected to provide a wealth of information not only on trading activity
but also on the interaction between these major international trading centres
(see, for example, Hamao, Masulis and Ng (1990) who investigate price dis-
covery). The primary finding is that the impact of Chicago trades on London
trades is stronger than the influence in the reverse direction. Furthermore,
a comparison of the semi-parametric kernel with its restricted exponential
counterpart reveals that the interaction between markets is characterised by
both complex short term dynamics and long memory, features that cannot
be captured by the exponential kernel. This is a significant result which sug-
gests that the standard Hawkes model based on an exponential kernel may

underestimate cross-effects between the markets.

2 Modelling Intensity

Let N = (Ny,---,N,) be an multivariate point process with associated
counting variables N(t) = (Ni(t), -+, N,(t)) that count the number of

events in N occurring in [0,¢). Let N satisfy the following assumptions.

A1l. The process N is orderly, so that

P[Ni(t + h) — Ni(t) > 1] = o(h) Vi.

A2. The process NN is weakly stationary.

A3. The process N is strongly mixing so that the distribution of the dif-
ferential increments dN;(t) and dNN;(s) behave as independent random
variables for all values of ¢ and j and values of ¢ and s separated by a

suitably large interval of time.



Given an m-variate mutually exciting point process a model for the condi-

tional intensity of NV; is specified as

)\Z(t) = u; + /(;OO ZGij(s)de(t — 8), 1= 1, ., n, (1)

j=1

in which p; is an exogenous intensity, dN; is the differential of the counting
variable for process Nj and G;(t) is the kernel function to be estimated from
data. In other words, the contemporaneous intensity of the i-th process is
given by a constant and its own past history, G;;(s), and the history of all
the other processes, G;(s) where i # j. The diagonal terms in Gj;(s) are
the self-exciting elements with the terms Gj;(s) capturing cross-excitation
when ¢ # j. The process defined by A(t) is stationary if the spectrum of the
matrix [ G(s)ds lies within the unit ball.

The standard treatment of the kernel function is to specify an exponential

form given by
Gij(t) = aij exp(—pijt), (2)

or to use Laguerre polynomials (Ogata, Akaike and Katsura, 1982; Ogata,
1988)
Gi;(t) = Z al(-j Ly, (t) exp(—pijt), (3)
k=0

in which «;; and f;; are parameters of the kernels and Laguerre polynomials

Ly(t) = ij @ (_,:!)Sts, (4)

s=0

defined on t > 0.

To estimate the parameters governing the intensities in equation (1), the
usual approach is to use maximum likelihood estimation applied to each

intensity. The log-likelihood function for the i-th process is given by (see



Karr 1991, p.175)

T

logLi =Y [1og(A,~) dN; + (1 — dN;) log(1 — )\i)], (5)
t=1

where parameters of the model appear implicitly via the value(s) of A;. Com-
putation of the maximum likelihood parameter estimates is performed via
the maximisation for each day d separately. In this case the likelihood func-

tion is given by

D Ty
ogLi0) =Y Y [log()\dt) dNg + (1 — dNg)log(1 — Aar)|,  (6)
d=11=14T;_,

where D is the number of days and T, represents the number of events to
have occurred up to and including day d and Ty = 0. Note that equation
(6) implies that each day is an independent realisation of the same random
process and overnight non-trading periods have no impact on intensity. The
latter assumption can be relaxed by adding a link function to the intensity

equation to capture the influence of overnight news (Bowsher, 2007).

The major advantage of the maximum likelihood approach is that when the
kernel is parameterised in a relatively parsimonious way, for example by
adopting the exponential specification (2) or the Laguerre specification (3)
with a small number of polynomials m in the expansion, the procedure is
straightforward to implement. Moreover, the maximum likelihood estimator
of the intensity model inherits the desirable properties of all maximum likeli-
hood estimators. For example, Ogata (1978) establishes that the maximum
likelihood estimator for a simple, stationary, univariate point process model

is consistent and asymptotically normal under certain regularity conditions.

While the parameters of the exponential and Laguerre specifications are
easy to estimate, they may, however, not be an appropriate fit for the data.

More appealing is the idea of an unrestricted (semi-parametric) memory



kernel. The difficulty is that the dimensionality of the parameter space

rapidly overpowers a standard optimisation algorithm.

3 Estimation based on Cumulants

This section develops a method for estimating a semi-parametric kernel

model based on the calculation of cumulants.

3.1 First- and Second-order Cumulants

The unconditional intensity of the process N; is defined as

_ E[dN;(t)]
Pi=——n (7)

Assumptions A1-A3 allow dN;(t) to be interpreted in terms of expected
values or probabilities (Brillinger, 1975). In other words, P; h is the uncon-

ditional probability of an event in (¢,t + h].

The joint intensity of events in IV; and NN; separated by an interval of duration
u, also known as the second-order product density, Pj;(u), is

E[dN;(t + u)dN;(t)]

Pyu) = )

In this case P;j(u) hk may be interpreted as the probability of an event in N;
during (t,t + h| and simultaneously an event in N; during (¢ + u,t + u + k|

for small values of h and k.
If events ¢ and j satisfy the mixing condition A3, then increments become

independent as u — co which means that

|u|—o00



This suggests that a measure of the strength with which events in N; and

N; separated by an interval u differ from independence is given by
Qij(u) = Fij(u) — PP u#0, (10)

where @;;(u) is known as the second-order cumulant. By virtue of as-
sumption A3, the function Q;j(u) — 0 as |u| — oo. Moreover, it fol-
lows directly from the definition of the second-order product density that
Qij(—u) = Qji(u), so that the cumulant for negative lags is the transpose

of the cumulant for positive lags.

The definition of the second-order cumulant can be extended to deal with
u = 0. Simultaneity implies a discontinuity in Q;;. By virtue of the fact

that every process is simultaneous with itself at u = 0, then

Pij(u) = PiPj u#0

Qij(u) = ,
PZ(S(U’) =7, u=0,

where 0() denotes the Dirac delta function. This methodology can be used
to test the independence of a series of events. When two point processes N;
and N; are independent, then @Q;;(u) = 0. In particular, Q;(u) = 0 for a
Poisson process when u # 0.

Suppose tg) denote the times of events in the process N; for a sample of

duration 7', then define

T2 (u) = ZI(M&@ = g)

r,s

where I(-) is the indictor function and the summation is taken over all rele-

vant values of 7 and s. Cox (1965) shows that

E[Y;(u)] ~ 0T Pyj(u) (11)



in which 7 denotes a window length. Using equation (11) the second-order

product density is estimated by
Pyj(u) = T;(uw) /0T, (12)
which together with equation (10) estimates the value of the cumulant at

Qij(u) = YL (w)/nT — PP (13)

Theorem 1: Distribution of ﬁwlm(u)
Given A1-A3 and fixed values of 1, then

VTP (w) = P ) % N (0, (41m) 7).

Moreover, f’,](u) and @ij (u) are strongly consistent. [ |

Proof: Brillinger (1976, 2012).

The importance of this result stems from the fact that the asymptotic vari-
ance of IDZ/ 2(u) is independent of N. This property can be used to assign
confidence intervals for use in ascertaining after what interval of time two
processes N; and N; behave approximately independently. Thus plots of the
square roots of product densities are useful for visualising periods of inter-
dependence of processes, and therefore providing information as to how to
set the interval of time over which the kernel function G;; may be regarded

as being nonzero.

3.2 Estimation

Estimating the kernel function using equation (1) starts by recognising that
all contributions from lags s > K are negligible. This results derives from

the mixing condition, A3, satisfied by the component processes of N which



ensures that Q(s) — 0 as |s| — oo, and also from the fact that G(s) — 0 as

s — 00. Therefore it is convenient to rearrange equation (1) into the form

K 0
Q(w) — G(w) D — /0 G(s) Q(w — s)ds = /K G(s)Q(w — s)ds, (14)

in which D = diag(P,- - , P,,) is the (nxn) diagonal matrix of unconditional
intensities. It is understood in subsequent analysis that the integral on the
left hand side of equation (14) will be approximated by a quadrature, for

example
T m
/ @) do =3 £ (s5), (15)
0 =

where 0 = 59 < 51 < -++ < 8, = T are the nodes at which f(z) is to be
evaluated and 7y, --- ,7vm are the weights associated with these nodes. The
right hand side of this equation will then assume the role of an error term

with Frobenius norm satisfying

oo , n . 2
H /T G(s) Q(w — s) dSHF = p;l </T ;Gpi(s) Qqi(w — 5) ds)

<3 (LIS 0] " (S e

Pg=1 i=1
< pgz:l /Too [;:;an(s)} ds /Too {g@gi(w - s)} ds

2
=

[l

Fds /TOO HQ(w —35)
< [ ool | ool

Consequently, the error term can be made arbitrarily small provided the
Frobenius norm of Q(s) is square-integrable over R™ and that the conver-
gence of G(s) to zero as s — oo is sufficiently strong so as to ensure that

the Frobenius norm of G is square integrable over (7,00). Assuming these

10



conditions are satisfied, the kernel function G(s) is ideally chosen to satisty

h(w) = || @(w) ~ Gw) p - /OT G() Qw — 5) ds]| = 0

forallw € (0,7). However, when the integral is approximated by the quadra-
ture (15), the ideal objective is unachievable for all values of w, and instead
the best outcome occurs when Gy, - -- , Gy, are chosen to make h(sy) = 0 for

k=0,---,m, that is, Gg, -+ , Gy, satisfy

Qsk) — Glsk) D= > vG(s)Qsk —5;) =0,  k=0,---,m. (16)
=0

Estimation proceeds in the following way. First, use equation (13) to esti-
mate the cumulant matrix Q(t), then solve the system (14) to estimate the

kernel G(t). Finally, calculate the vector of exogenous intensities p(t) using

p(t) = @ =[[GOINA®), (17)

in which T is the identity matrix, || - || denotes the L' norm of a matrix, and
A = E[A(t)]. Deo, Hurvich and Lu (2006) propose an alternative way to
estimate the deterministic component u(t) using regression in the frequency
domain. An alternative procedure for estimating the kernel function G(t),
proposed by Bacry, Dayri and Muzy (2012), requires the memory kernel to

be symmetric, while in this paper this assumption in not required.

3.3 Asymptotic properties of the cumulant based estimator

Given an estimate of kernel G(t), large sample properties of the cumulant
based estimator can be investigated. First, equation (16) can be rewritten

Q) =Go(d(t)I+Q(t)), t>0, (18)
— GoQ(t)

11



in which I is the unit matrix and o is the Fourier convolution. Equation (18)
is analogous to the Yule-Walker system that relates kernels G(t) with the

cumulant matrices Q(t) as

Tyo1[G(1), ..., G(u)] = [Q(1),....Q(u)] (19)
Q(0) - Qu-1)
1=
Q-1 ... ... Q)

Under assumption A2, I';,_; is a non-singular matrix so that system (19) has
a unique solution. In this case matrices G(j) can be computed from A and

the cumulant density matrices Q(j).

Theorem 2: Consistency

Let N be a point process defined in equation (1) satisfying A1-A3. The
cumulant based estimator of G, namely é, saisfies éij — Gj; in probability
as T' — oo. |

Proof: Appendix

The asymptotic distribution of the cumulant based estimator of a mutually

exciting process is given in the following theorem.

Theorem 3: Asymptotic normality
Given conditions A1-A3, a cumulant based estimator of a point process N

is asymptotically distributed as

VT(G - G) % N(Osz, Q’m),

~ ~ ~ ~

in which 0y is a vector of s zeros, ¥(7,7) = Cov(V (i), V (j)), V = [vec(I'y—1),

vee(Qy)), vec is the column stacking operator of a matrix, G = vec(Q),

i

Q' = — [D(D)L,, .o, T(s)L] ((r;l)’@ars—l) Lo 0g2y,)+ [0y T71], ®is the

12



Kronecker product, and s = nu. |

Proof: Appendix

An important implication of Theorem 3 is that the asymptotic properties of
the cumulant estimator G are defined by the first and second order char-
acteristics of process N and a parametric specification of the kernel is not
required. This result can be exploited to show asymptotic normality of max-
imum likelihood estimators as a special case. Let realisations of N be a

sample from the k-dimensional exponential family with density

po(x) = c(0)a(x) exp(0't(x)), (20)

where a and ¢t = (1, ..., tx) are known functions on the sample space and 6 is
a parameter. The log-likelihood function ¢y(z) = log py(z) can be differenti-
ated (see e.g. Van der Vaart, 2000) with respect to . Hence, the likelihood

equations Zég(Xi) = 0 can be represented as the system of k equations
1 S
- D H(Xi) =Egt(X).
i=1

Thus, the maximum likelihood estimators of kernels G are cumulant estima-

tors, which is formalised in the following Lemma.

Lemma 1: Asymptotic properties of exponential families
Let N be a point process defined in equation (1), satisfying A1-A3, and
G be the cumulant based estimator of G. Asymptotic properties of the
log-likelihood estimators of G depend on the function e(8) = Eg¢(X). By
differentiating Ey t(X) under the expectation sign, its derivative matrices are
given by

ég = Covp t(X),

in which the covariance matrices can be estimated from cumulants Q;;. W

Proof: Appendix

13



Note that the log-likelihood function, defined in equation (5) and parame-
terised by exponential kernels, is represented by a Poisson distribution which
is part of the exponential family (20) and therefore asymptotic normality
of estimates of a multivariate Hawkes model follows directly from Lemma
1. This extends the univariate results of Ogata (1978) to a multivariate
case, namely that the maximum likelihood estimator for a simple, station-
ary, multi-variate point process model is consistent and asymptotically nor-
mal. Moreover, Theorem 3 and Lemma 1 confirm an unproved conjecture
of Bowsher (2007) that the estimator of the Hawkes model is asymptotically

normal.

4 Simulation Experiments

A simulation exercise was conducted in which the point process models with

intensities
A(t) :,u+oz/ooe_ﬁst(t—s), (21)
0
At) = p+ /00 Z apt" Lexp(—pBt) dN(t — s) (22)
0 k=1

were simulated and estimated. Each simulation exercise involved 200 in-
dependent replications of models (21) and (22) with parameter values p =
0.001, a = 0.003 and 8 = 0.02 and m = 5, a3 = 0.2, ag = —0.0503,
az = —0.0452, a4 = —0.0166, a5 = 0.0022. With these parameter val-
ues, the simulated processes in (21) have mean rate 0.0012, or on average
one event every 800 realisations, while the simulated processes (21) with
the Laguerre kernel have mean rate 0.0010, or on average one event every
1000 realisations. Trials of length 250,000, 500,000, 1,000,000, 2,000,000 and

4,000,000 uniformly spaced realisations were run.

14



Table 1 reports the mean squared error (MSE) for the model mean in equa-
tions (21) and (22). The same sequences of trials are used to estimate the
simulated kernels assuming a memory of 100 lags and applying the cumulant
based procedure proposed earlier. As expected, the MSE for both models
systematically decreases when the number of trials grow. The rate of conver-
gence is consistent with the results reported in the previous section. Overall,

the exponential kernel is estimated more accurately.

Table 1: The mean squared error of kernel estimates from the model with
exponential and Laguerre kernels defined in equations (21) and (22). Val-
ues are multiplied by 10,000 and reported for 250,000, 500,000, 1,000,000,
2,000,000 and 4,000,000 independent trials.

Exponential kernel Laguerre kernel

250,000 0.0276 0.0533
500, 000 0.0159 0.0233
1,000, 000 0.0055 0.0152
2,000,000 0.0029 0.0071
4,000, 000 0.0015 0.0032

While a simulated process with 4,000,000 trials has similar characteristics
to models that will be discussed in the empirical section, it is interesting to
visualise the respective kernels for this case. These kernels are plotted in
Figure 1 at lag 100 with 5% confidence intervals. Only 2 estimated values
for the Laguerre kernel and 4 values for the exponential kernel lie outside the

confidence bounds, which confirms the accuracy of the proposed method.
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o

0 20 40 60 80 100
Lags Lags

Figure 1: Kernel estimates for the simulated model defined in equations
(21) and (22) with 4,000,000 independent trials were scaled by 1000. Con-
fidence intervals are represented by £1.96 x standard errors.

5 Data and preliminary analysis

Trading data for both the S&P 500 E-mini Index futures (traded on the
Chicago Mercantile Exchange) and FTSE 100 Index futures (traded on the
London Stock Exchange) contracts were downloaded from the Thomson
Reuters Tick History database. Trades are recorded at millisecond time-
stamps with an associated trade price and volume. The data covers the
period 3 January 2012 to 30 June 2012 for the times 14:30 to 16:25 (GMT),
Monday to Friday, a period during normal trading hours when both markets

are open and trading is active.

Counsider Figure 2 which shows the average number of trades per minute for
the period 14:30 to 16:25 (GMT). It is clear from Figure 2 that trading ac-
tivity is higher around the opening of trading in Chicago (14.30 GMT), and
around 15.00 GMT when most U.S. macroeconomic announcements occur,
a finding consistent with Becker, Finnerty and Friedman (1995). However,

the techniques proposed here to analyse the interaction between the markets

16



requires that the intensity of trading activity be relatively constant. There-
fore only data from the period 15.10 to 16.10 GMT will be considered, as
trading intensity in both markets is relatively constant during this period.
Restricting the sample to this time period means that contamination from

markets opening or macroeconomic announcements is avoided.

US - Trades
T

700 T T T T T T T T T T T

Minute Count
ey
o
o
T

100 L 1 1 1 1 1 1 1 1 1 1 1 1
14:30 14:40 1450 15:00 1510 15:20 15:30 15:40 15550 16:00 16:10 16:20 16:30

UK - Trades
T

90 T T T T T T T T T T T T

Minute Count
(2] ~ ©
o o o

3]
=]

N
[S)

30
14:30 14:40 14:50 15:00 1510 15:20 15:30 15:40 1550 16:00 16:10 16:20 16:30

Figure 2: Number of trades per minute related to respective stock
indices. Time in GMT.

The occurrence times of trades are mapped onto (0,00) for each trading day
in the same manner as Bowsher (2007). Two filters are applied to ensure the
validity of the trade data. The ranges of the S&P 500 and FTSE 100 were
taken to be [1000, 2000] and [5000, 8000] respectively in this investigation. A
small number of trades with prices lying outside these range were removed.

Additionally, a small number of trades with prices not at the minimum tick

17



size ($0.25 for the S&P 500 and £0.50 for the FTSE 100), or zero volume, or
between the best bid-ask prices or with negative spreads were also removed
from the final data set. Finally, trades with the same time stamp and price

are treated as one event with an accumulated number of transactions.

Trade durations

Number of durations 1533037
Mean duration 258
S&P 500 Standard deviation 469
Minimum 1
Maximum 13716
Number of durations 279530
Mean duration 1415
FTSE 100  Standard deviation 2283
Minimum 1
Maximum 38920

Table 2: Descriptive statistics for the durations between trade
events for the S&P 500 and FTSE 100. The period is 3 January
2012 to 30 June 2012. The durations are measured in milliseconds.

Summary statistics of the durations between trades for the final data set are
presented in Table 2. This shows that the intensity of trading in Chicago is
greater and the average duration between trades in the S&P 500 contracts
is more than 5 times shorter than that for the FTSE 100. In addition, both
the volatility of the durations and the maximum duration is greater in the
FTSE contracts. The product density estimator of Brillinger (1976) is used
to examine the autocorrelation, or persistence in the trade point processes.

This estimator is given by

Pyi(u) ~ N(y/Py(w), (47) ) (23)

18



in which P;;(u) is the second order product density between events of type
1 and type j at a lag v and T is the sample size. The parameter estimates
have a constant variance, which is used for setting confidence intervals to
test the hypothesis of independent counting processes IN; and N;. In this

case, the 95% confidence limits for |/ P;;(u) are
P, P; +1.96(4T) /2, (24)

in which PZ and Pj are the rates of the processes IN; and N; respectively. If
the estimated values lie inside the upper and lower confidence intervals, it
can be considered evidence of the independence of the counting processes N;
and NN;. Plots of the square roots of product densities at lag u will identify

the region of lags for which interactions between trades are significant.

The autocorrelations' in trades in both markets, represented by the esti-
mates of the square root of product densities from equations (23) and (24),
are shown in Figure 3. It is clear that S&P 500 trades are self-exciting ex-
hibiting memory of around 10 minutes. The FTSE trades are less persistent,
exhibiting memory out to around 5 minutes. Estimates of cross-correlation
between the series of trades based on equation (23) are shown in Figure 4 and
reveal a significant degree of dependence between the trades in each market.
Positive (negative) lags in this case relate to S&P500 (FTSE) trades lead-
ing trades in the other market. Significant cross-correlations at positive and
negative lags indicate that trades in both markets are strongly interrelated,
an important result motivating a deeper investigation into the interaction

between trades.

'In this section the term autocorrelation is used interchangeably for a lead-lag rela-
tionship.
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(a) S&P 500 trades (b) FTSE 100 trades

Figure 3: Estimates of the square root of the product density from equation
(23) for T' = 3600000 are reported. The dashed horizontal lines are the
estimated asymptotic values with the upper and lower 95% confidence limits
under the hypothesis of independence. Lags are measured in minutes. Zero

lags are excluded for illustration purposes.

0.02

0.0195

0.019

0.0185

0.018

0.0175

0.017

0.0165 ‘ : ‘ ‘ ‘
60 40 20 0 20 40 60

Figure 4: Estimates of the square root of the product density from equation

(23) for T' = 3600000 are reported. The dashed horizontal lines are the

estimated asymptotic values with the upper and lower 95% confidence limits

under the hypothesis of independence. A zero lag is excluded for illustration

purposes. Lags are measured in seconds.
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6 Empirical application

The preliminary analysis from the previous section shows that trades in
both markets are strongly interrelated through complex short-term dynamics
and long term memory. The main task is now to quantify this relationship
without assuming an exponential memory kernel. This task is achieved by
using the numerical procedure from Section 3 to estimate the multivariate

conditional intensity model

At) =p+ /Ooo G(s)dN(t — s) (25)
with
GS C
Gt)y=| _us Tuk | 26

in which G;,(t) and G2, (t) capture the self exciting effects of trades in
each market, while G{(t) and G¢,(t) capture the cross excitation from the
S&P500 and from the FTSE contracts respectively. A distinguishing feature
of this model is its ability to capture bi-directional interactions between

trades from each market.

Given a pair of records of occurrence times of S&P 500 and FTSE, {¢; €
I,s} and {t; € I} respectively, and the exponential kernel specification in

equation (2), the likelihood function in equation (5) can be rewritten as

tiEIus
ol Oéck
— pusT — 2223 (1 —exp(—B5,(T — ;) — (1 — exp(=B(T — 1))
us tiEIus uk tjEIuk;
achs c aik s
T = ¢ D (1 —exp(=B5,(T — ;) — 2 (1 = exp(=B3(T — 1))
us tielus uk tjGIUk
= 3 o8t + A% R + @ Ri (), 27)
tjEIuk

21



us(z) = exp(_(ti - ti—l)ﬁis)(l + Ris(Z - 1))7
chLs(j) = eXp(_(tj - tj—l) chs)(RZs(j - 1)) + Z eXp(—(t]’ - ti/)ﬁzs)a

N
ity 1<t <t

we(0) = exp(—(t — i) B ) (REp (i = 1)+ Y exp(—(ti —t;)Bi),

j,:tiflgtj’ <t;
Rip(d) = exp(=(t; — tj-1)Bu) (1 + Ryp (5 — 1))
Table 3: Coefficient estimates of the Hawkes model (25). Parameter esti-

mates (top) and t-statistics (bottom) are reported in each cell. Coefficients
that are significant at the 5% level are marked (*).

)\us (t) )‘uk(t)

A5 0.0176* &5, 0.0059*
Qo Tmy  Tw T

s 0.0410% 35 0.0173*
(4.52) (5.17)

ac 0.0073* &S 0.0079*
(3.28) (5.72)

3 0.0216* A, 0.0196*
uk T362) Fus (2.88)

lus  0.0022* [, 0.0005*
Hus  Seiesy o Yam

Coefficient estimates for the multivariate intensity model defined in equa-
tions (25) and (26), are presented in Table 3. All coefficients are significant,
revealing complex interaction within, and between the two markets. The
effect of self-excitation, captured by the coefficients o® and $°, is stronger
in the S&P500 market. Moreover, the coefficient af,; and of,, capturing
the cross effects between the Chicago and London equity markets, are very

similar in magnitude.

In order to assess the impact of a trade event on the respective intensities, the

estimated kernels from equation (26) are plotted in Figure 5. An interesting
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Figure 5: Exponential kernel estimates for the
trade models defined in equations (25) and (26).

observation is that the effects from Chicago are stronger within the short
intervals, while the impact from the London market is more significant at a
longer horizon. This result confirms the finding of Huth and Abergel (2014)
that the most liquid assets in terms of high trading turnover, which are the

S&P500 contracts in this case, tend to lead the others at short horizons.

Results using the simple Hawkes model revels a significant interaction be-
tween the trades in both markets. In order to explore the question of whether
or not the exponential kernel is too restrictive a specification, the semi-
parametric kernel together with the cumulant-based estimation procedure

will now be applied to the same data.

Consider the model defined by equation (25) without assuming the ker-
nel function to be exponential. The kernel matrices G(s) in equation (26)
are now estimated using the algorithm described in Section 3. The semi-

parametric kernel estimates are then compared with the estimates of the
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Laguerre kernels?

4
Gij (t) = Z agf)Lk(t) exp(—ﬂijt). (28)
k=0

Table 4: Coefficient estimates of the intensity model from equation (25) with
Laguerre kernels from equation (28) are estimated using the maximum likelihood
approach. Parameter estimates and t-statistics in parenthesis are reported in each

cell. Calculations use m = 4 Laguerre polynomials.

US«+US UK+« UK US—UK UK-US
a®  0.5142* 0.0190* 0.0071* 0.0066*

(3.03) (17.9) (75.6) (52.3)
a®  —0.6703* —0.0037* 0.0003* 0.0001*
(4.52) (9.40) (10.7) (4.18)
a@  0.3461* 0.0003* 0.0001* 0.0001*
(2.05) (7.05) (6.84) (14.9)
a®  —0.0756*  —0.0001*  —0.0001*  —0.0001*
(2.04) (5.32) (11.6) (15.3)
&% 0.0059* 0.0001* 0.0001* 0.0001*
(2.14) (4.01) (21.6) (19.3)
B 0.6144* 0.0710* 0.0564* 0.0553*
(17.3) (13.9) (174) (106)

The estimates of model (25) with the Laguerre kernels from equation (28)
are presented in Table 4. The first and second columns of Table 4 contain
estimates of the self-exciting kernels, while the third and fourth columns rep-
resent cross-exciting effects from Chicago and London respectively. All the
coefficients are significant, which confirms that all five Laguerre polynomials
capture dynamics of trading intensity that cannot be modelled by the simple

exponential model.

2Ogata, Akaike and Katsura, (1982) give empirical arguments in favour of parametric
Laguerre kernels rather than exponential kernels. For this reason, the performance of
Laguerre kernels is compared with the semi-parametric estimates. The deterministic term
u is important for non-stationary models, where it can capture the diurnal patterns (see
e.g. Engle and Russell, 1998; and Bowsher and Meeks, 2008). However, this term is not
reported as the models discussed here deal with stationary data.
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Figure 6: Kernel estimates for the trades model defined in equations (25)

and (26). Effects from Chicago are presented in the first column and from
London - second column.

The self-exciting effects reveal complex dynamics in both London and Chicago.
In particular, the coefficients &(©) are positive and &) are negative, which

means that in the short run the kernels decay and then rise in the longer
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term. The cross-exciting effects are characterised by significant coefficients
ak) supporting the conjecture discussed earlier that the kernels do not die

out within 100 milliseconds.

To compare the Laguerre kernels from Table 4 with the corresponding semi-
parametric kernels, both their estimates are presented in Figure 6. The
semi-parametric self-exciting kernels show a periodic pattern: every 10 and
25 milliseconds there is a spike in the self-exciting responses. In the case of
Chicago, both the Laguerre and unrestricted kernels decay then peak around
20 milliseconds. After this, the Laguerre decays to zero quickly whereas the
unrestricted kernel exhibits periodic behaviour. The same pattern is evi-
dent in the case of self-excitation in London trading though the effect is
not as pronounced. The cross-exciting kernels, however, exhibit quite dif-
ferent shapes. While the kernel capturing the effect of Chicago trading on
the London market exhibits slow continual decay, the corresponding kernel
function describing the impact of London trading on the Chicago market
has a clear peak around 20 milliseconds, and thereafter exhibits continual
decay almost identical to that of the former. In this case, both the La-
guerre and unrestricted kernels exhibit very similar patterns. Overall, the
more flexible kernels are capturing effects that are more complex than can
be identified with simple exponential kernels. To compare the goodness of
fit of the two kernels, residuals of the estimated model (25), defined as a
rescaled point process after applying a random time change can be com-
pared.®> The sum of the squared residuals from the Laguerre kernel, 781.1,
and the semi-parametric kernel, 329.4, show that the added flexibility of the
unrestricted semi-parametric kernel is of benefit in explaining the dynamics

of the trades in the two markets. Overall, these results show that complex

3A comparison of the residuals n unit-rate independent Poisson processes is described
in Appendix E.
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interactions between trades in Chicago and London are evident during the
short period of overlap in trading. Given the methods proposed here, it is
found that unrestricted semi-parametric kernels offer a better explanation of

the dynamics in trading activity.

7 Conclusion

This paper proposes a novel approach for estimating multivariate point pro-
cess models without restrictive assumptions regarding the shape of the mem-
ory kernel. The kernel of a point process can be estimated from data via
the numerical solution of a system of integral equations. At its core, the
strategy involves calculation of second-order cumulant functions from event
data. Asymptotic properties of the proposed estimator are presented and its
finite-sample performance investigated in a small simulation exercise. It is
also shown that a standard maximum likelihood estimator of a multivariate
Hawkes process has the same large sample properties as the cumulant based

estimator.

As an empirical illustration of the efficacy of the new approach, an investiga-
tion of trade events for the time when both the Chicago and London markets
are open is undertaken. The results show that the impact of Chicago trad-
ing on the London market is stronger than in the reverse direction. From
a methodological perspective, one of the main conclusions to emerge is that
the adoption of a memory function characterised by exponential decay is
too restrictive. In this application at least, the semi-parametric estimators
provides a superior fit to the short term dynamics and longer term memory

of the trade interactions.
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Appendices

A Asymptotic properties of product densities

The analysis begins with the assumption that ﬁNN(u) is asymptotically

Gaussian distributed with mean value p = Pyy(u) and variance o? =

(BT) ' Pyn(u). Let X = Pyn(u), then it is necessary to compute the

asymptotic mean and variance of v/ X given that 2 ~ N(u, 0?).

Mean The mean value of v/X is by definition

oo oo 1
E[X1/2] _ \/7 (x—p)? /202 dr / (Z +M)1/2 = e_z2/202 ds
—H v

0 271'

In the limit as 7 — oo the integrand takes the limiting value (z + p)'/? §(2),
where 6(z) is Dirac’s Delta function. Thus E[Pyy(u)] tends asymptotically

PNN(U).

Variance The variance of v/ X is by definition
Vi) = [T vE - v -
- [ vy

o (E-w?2/20? 4

_2 2
2% /20 dz

\/_

o 22 1 2
= 5 e 27 dy
—u Wzt p+r)? ov2or

The change of variable z = oy now gives

ﬁTV[X1/2] _ PNN(U) /Oo y2 e_y2/2d
\/ﬂ —u/U(Vay+N+\/ﬁ)2 v

Now let T' — oo, or equivalently let ¢ — 0 to obtain

: Pyn(u) [ y* _
1 TV[X1/2 :%/ e V2 g
Jim 5T VX o 1€ y =
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after noting that u = Pyn(u), and completes the proof of the asymptotic
properties of PJ{/]\%(U)

B Theorem 2

A proof follows from the results of Theorem 1 about consistency of Pj;(u)

and Qij (u)

C Theorem 3

As follows from Theorem 1, as T'— oo and 8 =1,

~ N : T Wo |, (A1)
Q(u) Q(u)

where Vg is a matrix of respective product densities.

Consider the sample covariance matrix, I';,_1, and the matrix of second-order

cumulants, @u Let

5 Vec(fu_l)
VFQ—[ vee(@,) ] (A2)

be a vector with n?(u?+u) elements. Then, using the result (A1), it is found

5 vec(Ty_1) N vee(I'y—1)
VFQ_[ vec(@u) ] N([ vec(Qy)

where g is the n?(u? + u) x n?(u? + u) covariance matrix of VFQ,

that

,T—12FQ> , (A3)

Srq(i, j) = Cov(Vig(i), Veg(4)),
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defined for 7,5 = 1,...,n?(u? + u).

Now the Delta method (Van der Vaart, 2000) is used to demonstrate asymp-
totic normality of G. Let ¢ be the function from R (W H) jnto R defined

by
©(X) = (unvec,2 21, (X)Ch) -1 (unvec,2 v 244 (X)C2),

where X is a vector with n?(u? + u) elements,

L. Onuxn
C = ’ s C - 3

nxnu
are a (nu +n) X nu matrix and a matrix with n?(u + 1) elements, respec-

tively, Opxq is a matrix of zeros and unvecyyq(X) is the inverse of the vec
operator defined such as unvecyyq(vec(A)) = A (Further, the subscript of

this operator is omitted for simplicity).

Note that for XA/FQ defined in (A2)

Then, by the Delta method,
G ~N(G,T~'D'SrgD),
where G = vec(G) and

b (i@) _ (3_@>
8X |X=‘7FQ aX’ |X=‘7FQ

is the n?(u? +u) x n?u derivative matrix of the function ¢, defined as follows.
Let f: RP — RY be a vector valued function with vector variable. The p x ¢

matrix derivative of f is defined as

of _<3f> N !
0X 0X of, o,
0X1 00X,
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in order to meet the needs of the Jacobian matrix.

Furthermore, ¢(X) can be represented as the product of two matrices,

©(X) = M (X)My(X). Then, by using the product rule, it is found that

99\ (oM M)
ox') ox’
/ dvec(M;h) _

!

ovec(Ms) l
ox’

Now, using the matrix derivative of an inverse matrix,

dvec(M; 1)
ox'

N _1\ Ovec(M;)
- _ M 1 M 1) R S
<( 1) @M X
replacing M; by unvec(X)C;, and using the properties of vec and unvec
operators (Neudecker, 1969) and the derivative matrix rule of f such that

f = AX, where A is a constant matrix, it is found that

! nvec
76\762(;\,{1 ) =— (((unvec(X)C’l)_l), ® (unvec(X)C'1)_1) Ovec(u aX,(X)Cl)
=— (((unvec(X)Cl)_l), ® (unvec(X)Cl)_1> 8(015)%“))(

=— (((unvec(X)C’l)_l), ® (unvec(X)C’l)_l) (C; @1L,).

Applying the same rule to Mo,

ovec(My)  9(Cy@ L)X
ox oX’ = (C2 ®Tnu).

Then,

’

<%> = (— ((unvec(X)Cg)l @ Iny)
(((unvec(X)Cy) ™) @ (unvee(X)C1) ) (C) @ L)

!

+ (L @ (unvee(X)C1) ™) (Cy @ Inu)) )
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Therefore,
Dl = _(7/ ® Inu)((Fﬁi)/ ® F;J)(Ci ® Inu) + (Il ® F;J)(Cé ® Inu)
= [F(1)187 7F(S)Is] <(Fs_1)/ ® Fs_l) [182 Os2><s] + [Osxs2 Fs_l] )

where v = vec(Q), s = nu and the theorem follows.

D Lemmal

As follows from Lemma 4.5 of Van der Vaart (2000), the vector of partial

derivatives (the score function) satisfies
: é
lo(x) = 5(0) +t(x) = t(x) — Ept(X).

The second equality shows that score functions have zero means. It can
be formally established by differentiating the identity [ pgds =1 under the
integral sign. Combining the Lemma 4.5 of Van der Vaart (2000) and the

Leibniz rule gives

0 [ 0c(0)
9; /pgds B / 00;

The left side is zero and the equation can be rewritten as 0 = ¢/c(0)+Egt(X),

a(x)exp(@lt(a:))ds(x)—F/ c(0)a(z)t;(z)exp (0 t(z))ds(z).
which proves the lemma.

E A goodness of fit test

In order to perform a goodness of fit test of the estimated model (25) one

can use the following corollary 14.6.V. of Daley and Vere-Jones (2008):

Corollary 1 (Random time change*) Let N denote a nonterminating mul-

tivariate point process with components N;, i = 1,....n and F-conditional

“See Daley and Vere-Jones (2008) for the proof.
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intensity A\;(t). Let a(t,i) = fg \i(s)ds and denote by N the rescaled point
process defined to have a point at {a(t,i),i} if and only if the ith component
of N contains a point att. Then Nisa stationary compound Poisson process

with unit intensity.

Equivalently, if the rescaling is performed so that N has a point at (a(t,1),7)
whenever the original process has a point at (t,1), then the resultant process

consists of n independent, unit-rate Poisson processes.

The corollary 1 allows to transform a point process N to n unit-rate inde-
pendent Poisson processes. This result can be applied to the pooled process
received by superposing all events for two markets. The residuals of this
process can be defined as

tit1 2 )
e? = /t Z)\i(S)dS, (] = 07 17 )7

i =1
where e‘;’ is the Poisson process with intensity 2. Given the estimates of
kernel G;;(-) and exogenous intensity fx, the rescaled residuals® e;) can be
plotted in the unite square with the confidence lines of the standard normal
distribution :I:Zl_a/z/\/T, in which T is the length of the sample. If the
empirical values e? falls outside the confidence bands it is an evidence of

unsatisfactory fit.

Given the estimates Gj;(-) of the model (25), a goodness of fit test of the
model with Laguerre and semi-parametric kernels was conducted. The good-
ness of fit results indicate a poor performance of the model with the Laguerre

kernel comparing to the semi-parametric model.

SBefore plotting the residuals e;;’ should be multiplied by the intensity of the pooled

process, which is equal to 2.
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