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ABSTRACT

We consider the following problem. A structural equatiorirgérest contains two sets of explana-
tory variables which economic theory predicts may be endoge. The researcher is interesting in
testing the exogeneity of only one of them. Standard exdgetests are in general unreliable from
the view point of size control to assess such a problem. WeldegYour alternative tests to address
this issue in a convenient way. We provide a characterigaifatheir distributions under both the
null hypothesis (level) and the alternative hypothesisMgr), with or without identification. We
show that the usua}? critical values are still applicable even when identifioatis weak. So, all
proposed tests can be described as robust to weak instrsimatalso show that test consistency
may still hold even if the overall identification fails, pided partial identification is satisfied. We
present a Monte Carlo experiment which confirms our theorg iNMistrate our theory with the
widely considered returns to education example. The esmitlerscore(1) how the use of stan-
dard tests to assess partial exogeneity hypotheses maysleading, and2) the relevance of using

our procedures when checking for partial exogeneity.

Key words. Subset of endogenous regressors; Generated structuiaticag Robustness to weak
identification; Consistency.

JEL classification: C3; C12; C15; C52.



1. Introduction

Inference methods using instrumental variables (IV) mashare mainly motivated by the fact that
explanatory variables may be correlated with the error tesmordinary least squares (OLS) yields
biased and inconsistent estimators. It is well known thatmexplanatory variables are endoge-
nous, OLS estimators measure only the magnitude of asgwgiaather than the magnitude and
direction of causation which is needed for policy analyBisestimation provides a way to nonethe-
less obtain consistent parameter estimates, once the effeommon driving variables has been
eliminated. Usually, researchers need to pretest the eeitgeof the regressors to decide whether
OLS or IV method is appropriate. In the linear IV regressiexpgeneity tests of the type proposed
by Durbin (1954); Wu (1973, 1974), Revankar and Hartley @9and Hausman (1978), hence-
forth DWHRH tests, are often used as pretests for exogerieégent studidshave established that
they never over reject the null hypothesis of exogeneitynevken model parameters are weakly
identified.

A drawback of DWHRH tests however is that the null hypothesimterest is specified on the
whole set of supposedly endogenous regressors. When naoretie regressor is involved, these
tests cannot pinpoint which regressor is endogenous anchviginot, once joint exogeneity has
been rejected. This is particularly problematic from thewpoint of estimation, since efficiency
requires to use available instruments only for the regresatich are endogenous. The use of
instruments for exogenous regressors often yields ineffiocestimates of model parameters. To
avoid such situations, it is important to know which varebbre endogenous and which are not
before inference. In models involving more than one supgigsendogenous variable, as it is often
the case in most empirical applications, it is important ol fivays to assess the exogeneity of the
regressors separately.

However, the literature has focused on testing hypothgsssfeed on the structural parameters
and inference procedures that are robust to identificatioblems. Although these robust pro-
cedures extend to hypotheses specified on subsets of salustwmameters [Dufour and Taamouti
(2005, 2007), Kleibergen (2004, 2005), and GuggenbergaiSanith (2005)], not much is known
about testing for partial exogeneity, especially when fifieation is weak.

In this paper we propose alternative tests for assessin@lpaxogeneity hypotheses in linear

1See for example, Staiger and Stock (1997), Guggenberg&f)28nd Hahn, Ham and Moon (2010).
2Anderson and Rubin (1949, AR-test), Kleibergen (2002, Ktddt),Moreira (2003, MQLR-test).



simultaneous equations models. The proposed tests doquiteehe exogeneity of the regressors
not being tested or strong instruments, so they can be tesdcais identification-robust. To be more

specific, we consider a model of the form
y = YB+WO+u

wherey is an observed dependent variabteand1V are matrices of observed (possibly) endoge-
nous regressors. We wish to test the exogeneity, dfe. the hypothesisov (Y, u) = 0.

First, we stress the fact that the regresddravhose exogeneity is not being tested can be or-
thogonalized through a methodology built on four steps. &ferito the transformed equation where
W has been replaced by the orthogonalized regres§brsas thegenerated structural equation
An interesting feature of thigenerated structural equatida the structural parameters of intergst
andd have the same interpretation as in the original model.

Second, we show that the exogeneity hypothesig ain be assessed by testing whethies
uncorrelated with the error of thigenerated structural equatiothough the latter error typically
differs to the original structural one. We then follow Durk(1954), Wu (1973), and Hausman
(1978) in proposing four statistics based on the vector ofrests between ordinary least squares
(OLS) and instrumental variables (V) estimatorsfin the transformed model, upon scaling by
appropriate factors to guarantee the usual asympy@titistributions.

Finally, after formulating generic assumptions on modeialdes which allow one to charac-
terize the behaviour of the tests under both the null hymighgevel) and the alternative hypothesis
(power), we consider two main setups. In the first setup, inogi@meters are strongly identified,
i.e., the reduced form parameter matrix that charactetlzestrength of the instruments has full
rank. The second setup is Staiger and Stock’s (18%4)-to-zero weak instrument asymptotits
this setup, the parameter matrix that controls the streoiftie instruments approaches zero at rate
[n*%] as the sample size increases. The later case is often interpreted as a situatiere some
linear combinations of the structural parameters areeilednined by the data [see the review of
Andrews and Stock (2006), Dufour (2003), and Stock, Wrigtat #ogo (2002)].

In all setups, we show that under the null hypothesis of @sterthe usuak? critical values
are applicable whether the instruments are strong or waakhé&rmore, our analysis indicates that

test consistency may still hold over a wide range of casegevbeerall identification fails, pro-



vided partial identification is satisfied. However, the desthibit lower power when all instruments
are weak. We present a Monte Carlo experiment and an empgdication which confirm our
theoretical results.

The paper is organized as follows. Section 2 formulates theéefstudied. Section 3 describes
the test statistics. Sections 3.1-3.2 study the asymppaotiperties (level and power) of the tests in
both strong and weak identification setups. Section 3.3&ptethe Monte Carlo experiment while
Section 4 deals with the empirical application. Conclusiare drawn in Section 5 and proofs are
presented in the Appendix.

Throughout the papety, stands for the identity matrix of ordér. For any full rankn x m
matrix A, P4 = A(A’A)~! A is the projection matrix on the space spanned by the colurhds o
andMy = I, — P4. The notatiorvec(A) is thenm x 1 dimensional column vectorization df and
B > 0 for a squared matrix3 means thaB is positive definite (p.d.). Convergence in probability
is symbolized by “% " < v stands for convergence in distribution whilg,(.) ando,(.) denote
the usual (stochastic) orders of magnitude. Findlly|| denotes the Euclidian norm ofvactor or

matrix U, i.e, |U|| = [tr(U’U)]%.

2. Framework

We consider the following linear 1V regression model

y = YB+Wl+u, 2.1)

Y = ZO+v, W=Z2T+¢, (2.2)

wherey € R" is a vector of observations on a dependent varidble, R»*™ and W € R™*™Mw
(my + my,, = m > 1) are two matrices of (possibly) endogenous explanatoriabtas, Z <
R™*! is a matrix of exogenous instruments,= (u, ..., u,) € R" is the vector of structural
disturbancesy € R™*™v and¢ € R™*™» are matrices of reduced form disturbancgsc R™v
andf € R™w are unknown structural parameter vectors, wiilles R>*™v andI' € R are
unknown reduced form coefficient matrices. An extension ofleh (2.1)-(2.2) that is more relevant
for practical purposes arises when we add included exogevanablesZ;. However, the results of

this paper do not alter qualitatively if we replace the Valga that are currently in (2.1)-(2.2) by the



residuals that result from their projection offp. We shall assume that the instrument maffixas
full-column rank  with probability one and > m. The full rank assumption requires excluding
redundant columns fror@. It is particularly satisfied whetr; is generated by power series or
splines through an underlying scalar instrumenti.e. if Z; = p(z;) = (1, a4, ..., xﬁfl)’ [see
Hansen, Hausman and Newey (2008, Assumption 1) for furtbeild].

The usual necessary and sufficient condition for identificatof model (2.1)-(2.2) is
rank(Ilyw) = m, wherellyy = [II, T'|. If Iy = 0, the instrumentsZ are irrelevant,
and(¢’, 5’)" is completely unidentified. If < rank(ITy ) < m, (8, )" is not identifiable, but
some linear combinations of its elements are identifiabée [Shoi and Phillips (1992), Dufour and
Hsiao (2008)]. IfITIyy is close not to have full ranke[g, if some eigenvalues df}; I1yy are
close to zero], some linear combinations(6f, ¢’)" are ill-determined by the data, a situation often
called “weak identification” in this type of setup [See fomexple, Staiger and Stock (1997); Stock
et al. (2002); Dufour (2003); Andrews and Stock (2006)]. Wallsnow introduce the statistical

problem of interest.

2.1. Statistical problem

We consider the problem of testing the partial exogeneify dfe. the hypothesis
HE : cov(Y, u) = 04y =0 (2.3)

where the regressofd’ not being tested may be endogenoasy{(V, u) = o¢, # 0]. By con-
vention, we consider that a matrix is not present if its nundfecolumns is equal to zero. We
assumen, > 1 butm, = 0 is allowed. In particular, if the null hypothesis (2.3) isesfied in
the whole set of (possibly) endogenous regressors, weave= 0 and W drops out of model
(2.1)-(2.2) and B is the standard exogeneity problem considered by DurbiB4t9Wu (1973);
Revankar and Hartley (1973); and Hausman (1978). In this,c8@taiger and Stock (1997) and
more recently Guggenberger (2010) showed that DWH testy apen when model parameters are
weakly identified.

Our concerned in this paper is how to tegt i m,, # 0, as DWH-RH tests are no longer valid
except wheri¥ is exogenous. In this perspective, we aim to provide valatedures for assessing

Hf whetheri¥ is exogenous or not, with or without weak instruments.



To illustrate the problem, consider the following workmmmsxample from Card (1995) that

analyzes the return on education to earnings.

Example 2.1 The structural equation of interest is given by

yi = YiB+ W0+ Zyy +ui (2.4)

whereY; is the length of education of individual W; = (exper;, exper?)’ contains the expe-
rience exper) and experience squared of individuaWwhereexper; = age; — 6 — Y;; Z1; =
(1, race;, south;, IQ;)" consists of a constant and indicator variables for racedease in the
south of the United States and IQ score; ands the logarithm of the wage of individual All
variables inZy; are assumed exogenous. It is well documented that odind 1W; are potentially
endogenous, hence instrumental variables are neededdistemtly estimate andd in (2.4). The
matrix instrumentsZ containsage, age? of individual i and two proximity-to-college indicators for
educational attainment; these gpeoximity to 2- and 4-year college.

To access the joint exogeneity @fuc, exper, exper?) in (2.4), we use Wu (1973),-statistic
and three alternative Hausman (1978) type-statisticsehari;, j = 1, 2, 3. All these tests are
robust to weak instruments, i.e., there are still valid ewéien model parameters are not identified.
We use data from the National Longitudinal Survey of YoungiMehich run from 1966 until 1981.
We exploit the cross-sectional 1976 subsample that cantaiginally 3,010 observations. When
accounting for missing data, the final sample has 2061 ohsens.

Our calculations givg, = 7.01, Hq = 8.33, Ho = 8.53 andH3 = 20.92 as sample values of
the statistics, which correspond to p-valed)0, 0.040, 0.036 and0.000, respectively. This indi-
cates clearly the evidence againgtic, exper andexper? joint exogeneity for all tests. Since joint
exogeneity is rejected, one important question is: shoddpply IV method to all the regressors
educ, exper, exper?? Note that because the joint exogeneity has been rejectehndoémnply that
all three regressors are endogenous. It could be that oelyscendogenous and the two others are
not. If so, applying IV to all of them may result in inefficieastimates of model parameters. This

underscores the necessity of having ways to check for thgemeity of each regressor separately.



2.2. Approach and model assumptions

In this paper, we aim to provide valid procedure for asseskif even wheriV is endogenous and
model identification is weak. The main challenge we are facinhow to deal with the possible
simultaneity drivingi¥” andu. The strategy that we propose is to repldEeby alV that is asymp-
totically independent withe under H. Suppose we have regress®ts satisfying this condition.

We can then express (2.1) as
y = YB+Wo+a (2.5)

whered, = u + (W — W)@ is asymptotically uncorrelated with”. We call equation (2.5) the
“generated structural equatidrto underscore the fact that” are generated regressors. Along with
being uncorrelated withi, a suitable candidaté/” in (2.5) should further leave invariant the null
hypothesis of interest in (2.3), i.eov(Y, @) = 0if cov(Y, u) = 0.

We now wish to discuss the choice Bf. Note first that if¢ has zero mean, the choice of
the conditional mean o/’ given Z is plausible, i.e.JV = E(W|Z) = ZT. This choice then
entails thatii = u + (W — W) = u + £6. BecauseZ is exogenous anil is fixed, W are also
exogenous, hence uncorrelated withA difficulty however is thal’ is unknown. This suggests
we replacel’ by an estimator, salf, which meets the above requirements. At first, one is tempted
to use the least squares estimafor= (Z'Z)~'Z'W obtained from the first-step regression. Even
thoughl is a consistent estimator &F when the model is correctly specified, it is well known that
V(' —T) = (Z2'Z/n)"'Z'¢/\/n andZ'u/./n are notindependent, even asymptotically. Hence,
we will still face a simultaneity problem choosing = ZT.

Now, assume that,s = E(v'¢) < co and0 < o2 = E(u'u) < +oco. Suppose further that
(u, v, £) have zero mean an%Z’[u, v, €] is asymptotically Gaussian. Then, we can show that
Z'u/\/nand—=Z'[(W — ZT) — U—%’LLJug] = L7'[¢ - éuaud are asymptotically independent

NG Vvn
[see Kleibergen (2002)]. Let

~ ~ ~ 1 N
W = zZT, T =(Z'2)YZ'W - U—Qz'ugug) .

u

(Z2'Z) ' Z'uoye.  (2.6)

)
s

The choice ofV in (2.6) then impliesi = u+ (W —W)f = u+MzE0+0¢Pzu so thatZ'a//n =

(14 0¢)Z'u/\/n is proportional toZ'u/\/n, whereoy = o,:0/02 is a scalar. Sinc&'u/\/n



is asymptotically independent %Z’[ — éuo‘ud, henceZ'/+/n and ﬁZ’[ﬁ — éuaug] are
also asymptotically independent. Hen&éii//n and/n(T" — I') are asymptotically independent;
which means that the choice 8f in (2.6) weighs out the simultaneity problerf.can be viewed
here as the part df that is asymptotically orthogonal ta Furthermore, when the above regularity
conditions hold, we hav&’a/n B oou + Yuel, whereX,¢ = E(v;&}) for all 4. In particular, if
v and¢ are uncorrelated (i.e. i, = 0) under H, we havep lim,,_,~, (Y'a/n) = 0 and H, can
in principle be assessed by testing whettids exogenous in model (2.5).

However, itis practically impossible to exploit (2.6)@so ¢ ands? are unknown. To alleviate

this difficulty, we suggest a strategy built on the followifogir steps:
1. projectlV on Z to obtainW = P,W;
2. regresg onY andW by OLS and recover the residuals, gay
3. estimater,e by &, = @, MzW/(n —m) ando? by 62 = @, Mzt /(n — m);
4. and generatd as

W=z, T = ©'—(Z22)" ' Z" (i, . Mgt,) i, MzW. (2.7)

Note thatT in (2.7) can be expressed &5 = (Z'Z)"'Z'A(i,)W, where A(d,) = I —
(U, Mzt) Y0 My. If Z'Z/n = O,(1) and Z'W/n = O,(1) along with the exogeneity
of Z, then we havei Mz, /(n — m) = u,a./(n —m) + op(1) and &, MzW/(n — m) =
W,W/(n —m) + op(1), so thatl = (2'Z)~'Z' My, W + o,(1), where M, is the projection
matrix onto the orthogonal of the space spanned by the rmisidy. Hence,T is asymptotically
orthogonal to the residual,. When identification is strond; % I' under standard regularity con-
ditions, which is always independent with the asymptotatriiution of Z’a//n. However, when
identification is weak' converges to a random variable which is correlated with #yenatotic
distribution of Z'u//n. The aim of the orthogonalization B¥ is guarantee asymptotically, the in-
dependence betweéfia/\/n andT'y. It is worthwhile noting that the choice &% in (2.7) implies

the following form of the errors in (2.5):

G=u+ (W —W)0 =u+ MzE0 + 69Pzi, where &5 = 6,10/52. (2.8)



We now make the following generic assumptions on the behadibmodel variables.

Assumption 2.2 The errors{Ui = (u;, v, ;)’ 1<i< n} are i.i.d. acrossi andn with zero

mean and the same nonsingular covariance mairigiven by

:(m+1)x (m+1), whereXy = ,
OVu EV E&) 25

_ / ’o\ 2. . . . .
Uvu—(aw,ogu), o0 1 X 1, opy i my X 1, 0gy iy X 1, Xyt my X my, Xyt My X My,

e myy X My, ando? — 03¢0 > 0. Furthermore, we hav&(Z;U/) =0 forall i =1, ..., n.

Assumption2.2 requires model errors to be homoskedastic. However, it eaadapted to

account for serially correlated errors.

Assumption 2.3 When the sample size converges to infinity, the following convergence re-
sults hold jointly (a) L™ ;U7 & =, 15" zU! 5 0, 13" 22 5 Qz; and (b)
d
T i1 (LU, viwi = ov) = ¥ = Pz, ,,), Wherely = (g, ¥z, Yze), vec(®) ~
N (0, ), vec(¥z) ~N (0, Z®Qz) and,, ~N (0, 02X%,).

Assumption2.3-(b) entails thatZ is weakly exogenous fof3’, ¢’)’, II, andT' [see Engle,
Hendry and Richard (1982)]. The normality assumption orlithéing distributions is implied by

Assumption2.2 and the central limit theorem (CLT).

Assumption 2.4 Under H;, the following two conditions holda) 1 37 | v;&} = O,(n™) for

somev > 1/2; and (b) > | Wi, = Op(n*%), where{u,; : 1 <i <n} are the residuals

from the OLS regression i{2.7).

It is worth noting that Assumptio2.4 needs not to be satisfied under the alternative. As-
sumption2.4-(a) along with Assumption®.2-2.3 entail that >" | v;¢&; 2 E(v;ig)) — 0 and
n’E(v;&)) = O,(1), asn — oo for somer > 1/2. This means that the covariance matiX;, of
the reduced-form error®), ¢) is asymptotically diagonal underfHThis assumption is particularly
satisfied under Hi if v and¢ are uncorrelatedX, = 0) or more generally 2, = X, /n” for
somer > 1/2, where X, is am, x m,, constant matrix. Furthermore, note that we also have

ﬁ S vl = n%*”n”% S vikh = 0p(1).0,(1) = 0,(1), sincer > 1/2. The condition that



LS Wit = Op(n*%) in Assumption2.4-(b) implies that the correlation between the resid-
uals from the OLS regression in (2.7) ad converge to zero in probability, as the sample size
increases. It follows thai’.1W/\/n = O,(1). Remark thati,1W/n % 0 does not implies that the
covariance between the structural ersorndW (hereo,,) converges to zero. However, it implies
a restriction of the fornv, = —6'% involving o¢,, X andé. Clearly, uw and W may still be
asymptotically correlated evendf, W/n 2083,

In this paper, we consider two main setups related to theifttion of model parametersi)
ITyw = [I1, T is fixed with ranKIIy ) = m; and(ii) yw = %[HO, I'o], whereIl, andT,
are constant x m, andl x m,, matrices (possibly zero). The setup fdy implies that(5’, ¢')" is
identified, hence the instrumenisare strong. However, our results can be extended to cases whe
(6, 0") is partially identified [i.e. Iy is fixed with0 < rank(IIyy/) < m], upon rotating
model variables in an appropriate way [See for example, @hdiPhillips (1992), Doko Tchatoka
and Dufour (2011), and Doko Tchatoka (201%}}) is Staiger and Stock (199%cal-to-zeroweak
instruments asymptotic. The parameter that controls teegth of the instruments approaches zero
at ratel /\/n as the sample sizeincreases.

We can now prove the following lemma on the asymptotic behavof Z'd./n, Z'u/n,

W'i/n, andY'i/n.

Lemma25 Suppose Assumption.2-2.4 hold and let o,, = 0. Then we have

Z'u/n, W'a/n, Z'./n, Y'a/n 2 0, irespective of whether the instrument are strong or weak.

Lemma2.5 shows clearly thalV’ is asymptotically uncorrelated within (2.5) and further, that
HE is asymptotically invariant by the transformation (2.7).

We now consider the following transformed model:
yt o= Yig+at, vi=Zz'TI+ot (2.9)

where the superscriptl!” means residual from projection onto the space spannedéygdlumns
of W. As W is asymptotically uncorrelated withunder H by Lemma2.5, Z+ is asymptotically
a valid instrument fory -. Furthermore, by exploiting (2.8), we can easily show tatat /n 2

Oou + e, If Assumption2.4 and I—G are satisfied, we hav&', = 0 ando,, = 0 so that

3Under Assumptiong.2-2.4, we havep lim , oo (Wn“> =0}f, = 0cu+ 2. Henceof, =0 & oue = —0'%;
so that the remark follows.



Y+ at /n 2 0, which means that Hcan be assessed by testing whettiér is uncorrelated with
@t in (2.9).

If 5is identified in (2.9), both the OLS estimator (namé}xs) and IV estimator/BW) of gare
consistent under # andj3,  is efficient. Hence, the magnitude of the vector of contrissall in
that caseff, s — 53, = 0,(1)]. However, when B is not satisfiedd.,, # 0), 5,y is still consistent
but 3,4 is not, so thaB3; g — 3,1, = O,(1). Therefore, in the same spirit as Durbin (1954), Wu
(1973), and Hausman (1978), we can build the test statistiassessing fon BLS — BIV, upon
scaling by appropriate factors to guarantee the usual asyimg>-distributions.

More interestingly, Lemm&.6 shows that Z- a1 /\/n, vt a1 /\/n) is asymptotically inde-
pendent of,/n(T’ — I'), whether identification is strong or weak. So, the (possibigjultaneity

driving W andu has been eliminated by the transformation (2.7), as redjuire

Lemma?2.6 Suppose Assumption.2-2.4 hold and let oy, = 0. Then we
have (ZL/’ELJ_/\/H7 UJ_/{LJ_/\/H) i (wZJ-'zlv wvlﬂ) Where (i) (wZJ-fu vaﬁ) ~
N [0, U%di&g(@zl, ZU)] , with Qzl = 1Z/2MQ1Z/2F 12/2, rank(Hyw) = m; and

(ii) (¢Zlﬂ’wvlﬂ) ~ lexmw N [O)J%diag(le/QMQZ/QF(IQ) 1Z/2’ Ev)] pdf(‘rQ)dx2 when
Iyyw = %[HO, To), T(22) = To + Q, x2 and pdf (z2) is the probability density function of

Yz evaluated atrs.

Three remarks are in order.

1. The results indicate that'a'/\/n is asymptotically uncorrelated with' @' /,/n and
vt S Sy, ~ N 0, 02X, ] , whether identification is strong or not. Consequently,
weak identification does not affect the asymptotic behaviguw -+ /+/n but the asymp-

totic behaviour oni’ai/\/ﬁ relies strongly on instrument quality.

2. When identification is strong [rafiKly ) = m], T 2, T which is a constant x m,, full
rank matrix. Hence(Z @+ /\/n, v @' /\/n) is asymptotically Gaussian, as expected [see
Lemma2.6-(i)]. However, when identification is weak (weak instrumenfS),i T(Yze) =
Ty+ Q}lﬂ) z¢ Which is a non-degenerated random process with probabitigy As a result,

the asymptotic distribution ofZ+'at /\/n, v+ @t/ /n) is a mixture of Gaussian processes

It is well known that IV methods produce inconsistent estesavhen identification is weak, see for example, Dufour
(2003), Stock et al. (2002), Stock and Wright (2000), BeK&&94), Choi and Phillips (1992), Nelson and Startz (1990a,
1990b), Phillips (1989).
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with zero mean, as showed Lemr&-(ii). Note that mixture is in the marginal distribution
of 415, becauseb,,. ; is independent of both (v ) andy ;1 ; when Assumptiong.2-2.4
and H; hold.

3. When identification is weak, the independence between ;, ¥,,.;) andI'(v 4, ) is crucial

to establish the validity of the tests that are proposedémtéxt section for assessing.H

3. Test statisticsand their asymptotic behaviour

We propose four alternative statistics to asse§srtamely
PP = ki(Brs = Brv) 2 (Brs — Brv), i=1,2,3,4 (3.1)
where k) = (n — 2my)/my, K; =n, forj =2, 3, 4, and

BLS = (Yﬂyl)flyrya BIV = (Y/PZLY)AY/P%?J’
5. = B34 A= 05— () 5y =820 — 620k 5y =74 5, = %A
Qv = Y'PuY/n, Qs =Y Y40, 6% = (y - YBIV)/MI/T/(?J —~YBp)/n,

62 = (y—YBLg) My (y—YBrs)/n, 63 =56%— (Brs — Brv) A (Brs — Brv)-

The above expressions 6f ¢, 3;,, and {2, are derived from the identitie¥ 'y~ = Y1'y,
P, Y+t = P, Y and P,iyt = P,.y. The statistics in (3.1) differ only through the variance

2 and G2 are the

estimators of the errorg" in (2.9) and the scaling factors;, 7 =1,2,3,4. ¢
usual OLS-and IV-based estimators of the errors (withoureation for degrees of freedom), while
&3 can be interpreted as an alternative IV-based scalingrfabhe use of different estimators of the
variance of the errors that leads to four versions of theisgatportant to discriminate between the
OLS-and IV-based residuals, especially when identificatioweak. When identification is weak,
the OLS estimator often outperforms [in terms of minimum meguared errors (MSE)] the IV
estimator [see Kiviet and Niemczyk (2007) and Doko Tchatakd Dufour (2011)]. The statistic

27 is an analogue to Wu (1973)-statistic and can be interpreted as a udtdesP of v = 0 in

SFurther details on the regression interpretation of DukbimHausman tests can be found in Doko Tchatoka and
Dufour (2011) and Davidson and Mackinnon (1993, sec. 8.7).
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the extended regression
yt o= YiB+otyte (3.2)

where o+ = M,.Y"', e = P,ivty + ¢, ande is independent ob-. The statisticsZ
(j = 2, 3, 4) are analogues to alternative Hausman (1978) type-$tatisbnsidered in Staiger
and Stock (199P?) The subscript#” in the notation of the statistics, as well as the null hyesis,
refers to partial exogeneity. The corresponding teststréjgwhen the test statistic is “large”. Sec-
tion 3.1 investigates the size and power properties of thts tghen identification is strong (strong

instruments).

3.1. Test behaviour with strong instruments

Before investigating the properties (size and power) ofakts, we shall first examine the behaviour
of the vector of contrasi;éLS — BIV. Lemma3.1 present the results under both the null hypothesis

(o = 0) and the alternative hypothesis, (, # 0 is fixed).

Lemma 3.1 Suppose Assumptio®s2-2.4 hold and rankIIyy ) = m. Then we have

o 2 ~ - ~ d _
(i) Brs—Brv 5 0, vn(Brs—Br)—=N|0, 022 —%;1)| wheno,, =0;

-
oy 2 - _ . = d
(i) Brs—Br - St ovu,  VR(Brs — Brv) = oo wheno, # 0;
whereX, =3, + 2, , = II'Q 4. 11, Q. is defined in Lemma.6-(i).

Lemma3.1-(i) states theconsistencyto zero and the/n-consistencyof the vector of con-
trasts3 LS — B v when H; holds and identification is strong. As expected, the lingititistribution
of \/n(BLs — Byv) is Gaussian with zero mean and constant positive definitarizowce matrix
o2 (-1 — =1, Under the alternative hypothesis,(, # 0 is fixed, i.e., does not depend on the
sample siz8), 85 — By — B2l # 0 so thaty/n(B.s — B1y) explodes, as showed Lemma
3.1-(ii). We can now characterize the asymptotic distributions ofsthéstics under both the null

hypothesis (level) and the alternative hypothesis (pavldrgoren3.2 presents the results.

6See also Guggenberger (2010) and Hahn et al. (2010).

"Throughout this paper, our analysis is based on alternajpetheses of the formH: ¢, # 0 whereo,.,
is am, x 1 constant vector. However, it is easy to show that urdeal-to-zeroalternative hypotheses of the form
H? : 0. = ¢/y/n wherec # 0 is constanty/n(3, s — B,,) converges to a Gaussian process with nonzero mean
when identification is strong. As a result, all tests in (2&hibit power againdbcal-to-zeroalternatives, though they
are no longer consistent.
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Theorem 3.2 Suppose Assumptio2s2-2.4 are satisfied and rarffIy ) = m. Then we have
(@) 7 % Lx2(my), 20 5 x2(my) Vi = 2,3, 4, wheno,, = 0; and (b) 27 % +oc

Vji=1,2, 3,4, wheno,, # 0.

Theorem3.2-(a) shows that allZ? statistics are asymptotically pivotal when identificatien
strong. Hence, the corresponding tests are asymptoticalig (level is controlled). Theorerd.2-
(b) indicates that test consistency holds, thus confirming teeipus results in Lemma.1-(ii).
The Monte Carlo experiment shows thdtt) level is still controlled for moderate samples [see
Figure 1 forn = 100], and (2) test consistency may still hold in a wide range of cases wtiere
overall identification breaks down, provided partial idécdtion is satisfied [i.eIIyyy is fixed and
0 < rank(IIyy ) < m]. So, the above results extend to partial identification ofiel parameters.
More generally, it can be shown that the necessary and sufficondition for consistency is that
My, lo,, # 0. We now study the behaviour of the tests under Staiger andk'St(k997)local-

to-zero weak instrument asymptotic.

3.2.  Test behaviour with weak instruments

In this section, we assume that model parameters are wetdigified, i.e.ITyy = ﬁ[l‘[o, T,

wherell, andI'y are constant matrices (possibly zero). As in the previocismse we first examine
the behaviour of the vector of contrast s — 3,1 Lemma3.3 presents the results under both the

null hypothesis and the alternative hypothesis.

Lemma 3.3 Suppose Assumptio®s2-2.4 hold andITyy = ﬁ[l‘[o, I'y]. Then, we have
(i) BLS - B[V A lexrnw fRszy N [O, 02‘11211)] pdf (z1,z2)dx1dxe  Wheno,, = 0;
SR -~ d _

(i) Brs— By — leX"“” fRLme N [,u,og\IlZi] pdf (z1,z2)dx1dre  Wheno,, # 0

where i = p(r1,220) = U,k (v1,29)(Ty + Q, wy) IZ/QMle/QF(m) 12/2

U zu(21,22) = (Ho+Q}lfﬂl)'le/zMleﬂr(m)QlZ/Q(Ho +Q7z' 1), pdf (z1,2,) is the joint prob-

ability density function ofy ,,, v z¢), andT(z2) = To + Q' x».

HOpvuv ‘IIZU =

In contrast of Lemma&.1, observe now that; ¢ — 3;,- converges to a non degenerated random
variable, 73, under H. Thoughj, s is still consistent under Hdespite the lack of identification,

Brv is not. The lack of identification then implies thag g — 3, = O,(1) under H. Because

13



Y21 T'(1z¢) andy 4, under H, the conditional limit-

M QYT (6 5) szszu, is independent of) /
ing distribution ofﬁLS—Blv, given(vz,,, ¥ z¢), is Gaussian with zero mean. So, its unconditional
null limiting distribution is a mixture of Gaussian processwith zero mean. Under the alternative
hypothesis €., # 0), the conditional limiting distribution of?LS — BIV, given (Yz,,, Y ze), is
Gaussian with nonzero mean so that its unconditional lgidistribution is a mixture of Gaussian
processes with nonzero mean.

1/20q

Let ¢0(x1,x2) = [ + H 712 (0 Uz‘I’ZU 1‘1,1‘2)) H ] 1 <1 andqﬁ(ml,xg) = [1 +

o D/’ N (11(z1,22) = Py, 28,1 (21, 22)) ||?]7! < 1. TheorenB.4 characterizes the asymp-

totic distributions of 2P statistics when instruments doeal-to-zero

Theorem 3.4 Suppose Assumptio2s2-2.4 are satisfied andIyy = %[HO, Tol. (a) If oy =

0, then we have

1
w4 —x2< ) D25 P (my),

_@p —> X /l / ¢o(x1, x2)pdf (21, 2)dx1dTe < Xz(my)
REXMw

for j =2, 3. (b) If 0, # 0, then we have

d,
P = — m /lxm /lxmy (mys; [loy, 1\111/2H|| Ypdf (z1, xo)dxydxs,
y w

@pﬁ/Zme /Zme my’ Ho-_l‘I,l/Qlu’H )pdf(xl)xQ)dxld.fCQ,
@p 5 /1 / ¢(x1, 22) x> (my; H071‘1’1/2M|| )pdf (z1, x2)dxdxs
REXMw

/lew /ley my’ HO‘il‘I’l/Qlu’” )pdf xl,.%'g)d.%’ld$2

for j =2, 3, whereW, = Wy, (z1,22) andpu = pu(z1, z2) are defined in Lemma.3.

Firstly, we note that under {H(o.., = 0), 27 and 2] are still asymptotically pivotal despite
identification issues. Hence, these tests have correcidizeveak instruments. Howeve®} and
2% are boundedly asymptotically pivotal. The upper bound efrtimiting distribution correspond
to their asymptotic distribution when identification isostg. So, the usually? critical values are
still applicable to these tests, even though doing so lead®nservative procedures. Clearly, all

proposedZ?-tests can be described as identification-robust. Secontignc.,,, # 0, 21 and 7
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converge to a mixtures of noncentsg distributions, whileZ? andZ?% are asymptotically bounded
by a mixture of noncentra}? distributions. Hence the tes@ and 2} are more powerful tham?
and 2%. Moreover, as¥ z,,(z1,z2) > 0 with probability one andi(z1,22) # 0 with probability
one whenIlyp,, # 0, hence the non centrality parameter in the asymptotic digtan of the
statistics is positive with probability one whdt,p,, # 0. This suggests that all tests may still
exhibit when identification is weak. This is conform with thecessary and sufficient condition for
test consistency which was thHtp,,, # 0 whenII is fixed (does not depend on the sample size
as it the case here). HoweverIikyp,, = 0, the limiting distribution of all statistics is the same
under the null hypothesis and the alternative hypothesssa fesult, the power of the tests cannot
exceed their nominal level in that case. This is particyléie case wheii/; = 0 (complete non
identification of 3). An interesting observation also is that even if the patemef the regressor
which exogeneity is not being tested in the structural isgetely unidentified 'y = 0), the tests
may still have power as long d%,p,,, # 0 [see Panel§B)&(C) in Figure 1]. In the other side, if
ITyp,,, # 0, the power of all tests is low even whéns identified or close so [as an illustration of
this, see Pan€lD) in Figure 1]. We now study in Section 3.3, the behaviour oftésts in a Monte

Carlo experiment.

3.3. Sizeand power comparison

We consider the following data generating process (DGP):

y = Y18 +YoBy + WO+ u,

(Y1,Yo, W) = Z(II;,II5,T) + (v1,v2,§), (3.3)

whereY = [Y7, Y3] is an x 2 matrix of regressors of interest¥ (here an x 1 vector} is the
endogenous variable which exogeneity is not being tesfedontaing instruments each generated
i.i.d N(0, 1) and is kept fix within experiment. S®J;, IT, andI" arel-dimensional vectors.

The errorq(u, v, ve, &) are generated such that:

wi = (L+p2 + 02, + P8 2 (e1i + Py, e2i + puyEsi + pecai),

vii = (L4 p2) Y2 (py 15+ e2i), vai = (14 p2) "2 (py 10 + €30),

®Note that the results are qualitatively the same whHérontains more than one regressor.
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_ j.i.d
& o= (L+p7) 1/2(,0561z' +eai), (e1i, €2is €36 €4) '~ N (0, Iy) (3.4)
foralli =1,....,n, -1 < p, <1, p,, = p,,/V3, and p; is kept atp, = 0.8. From this

parametrization, the partial null exogeneityofis then expressed agH p,, = 0. As seen from
(3.4),¢ is not correlated witfu,, v2) under Hj, but is under the alternative hypothesis. To extend
the model to cases wheteis locally correlatedwith (vq, v2), as required Assumptio.4, we
weakened the non correlation assumption betwgand (v, v2). The results for this setup are
presented in Figure 5 of Appendix B. They indicate that ttststare still valid even for moderate
correlation betweegi and(v1, v2).

The values of3;, 3, andf are set a@, —3 and1/2, respectivelyIl;, II, andI' are chosen
as: II; = 7y, Iy = 7oIIg, T' = 7T, where[IIy, I1y2, T'y] is obtained by taking the
first three columns of the identity matrix of dimensibnTo account for strong, partial and weak
identification of model parameters, we consider six par@lthie values of 1, 7o andr as follows:
(A) Ty =719 =7 =5, ie. By, By andd are identified;(B) 71 = 72 = 5, 7 = 0, so, 3;
and 3, are identified but) is not (partial identification);(C) 71 = 5, 7o = 7 = 2L ie. 3, is

%a

identified but3, andf are weakly identified;(D) 71 = 72 = 7 = 5, hencef is identified

0.1
=

3

05 _ L
Vi Vi

but 3, andj, are weakly identified{E) 71 = 79 = T
are weakly identified; and finallyF) 71 = 79 = 0, 7 = ﬁ : B, and 3, are completely non

i.e., all model parameters
identified (irrelevant instruments), adds weakly identified. The number of instrumeritselong
to {3, 10, 20} . Since we haven = 3 endogenous regressors in (3.8B) 3 corresponds to the
usual “just-identified” setup, whilé > 3 corresponds to the “overidentification”. The simulations
are run with sample size)0 and 300, while the number of replications & = 10,000. In all
cases, the nominal level is set5di.

Figures 1- 2 presents the power curves of the testa fer100, while Figures 3-4 in Appendix
B is for n = 300. The results are qualitatively the same in terms of level rcbrib both cases.
However, the power improves substantially wher= 300, as expected. First, we observe that all
tests have correct level whether identification is stroragtial or weak. Furthermore?? and 27
have approximately a good level even when Vs are weak [famgpte, see Figure 2 below and
Figure 4 in Appendix B where identification is weak]. Howeube same figures show clearly that
2% andZ? are overly conservative. In the same vain, all tests havidesippwer when identification

is strong strong (see Pangd) in Figure 1& 3), but%} and 2} exhibit more power thaw? and
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2% when identification is partial or weak. In addition, the deseonfirm that the tests have power
when the parameter of the regressors which exogeneitytesité@seres) is identified (for example,
see Pane(B)& (C) in Figure 1). But power is low whepi is weakly identified, even whefis
strongly identified (see Pan@D) Figure 1). Overall, the recommendation is to use the t@$tand

2% which outperform the others in all possible configuratiohmodel identification.
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Figure 1. Size and power at nominal le¥éh when identification is strong or partiat, = 100
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Figure 2. Size and power at nominal leséh when identification is weaky = 100
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4. Empirical illustration

We consider the return to education model from Card (199&xample2.1. The first-stage speci-

fications foreduc and(exper, exper?) are given by
educ; = Z'TL+ Z};61 + v;, (exper;, exper?) = ZIT + Z1;00 + &, i=1,...,n  (4.1)

whereZ; and Z are the same as in (2.4). In Exam@4, we found that DWH-tests rejected the
joint exogeneity of educ, exper, exper?), but we do not know if some regressors are exogenous.
In this application, we want to test the exogeneityedfic and (exper, exper?) separately. So,
two null hypotheses are considere) H} : cov(v;, u;) = 0 for all i (partial exogeneity of
educ) and (ii) Hb : cov(¢;, u;) = 0 for all i [partial exogeneity of ezper, exper?)], whereu

is the structural error term in (2.4). Note that in the setp(f), £ may be correlated with [i.e.
(exper, exper?) may be endogenous], while in those fdi), v may be correlated with, (i.e.
educ may be endogenous).

Table 1 reports the outcomes of the DWH-tests and4fidests proposed in this paper. The
DWH-tests are run under the assumption that the regressoiseing tested are exogenous, while
the 2P tests do not require this questionable restriction. It igantant to observe that becauseer
is generated asrper = qge — 6 — educ, we havecov (exper;,u;) = —cov(educ;,u;), asage
is exogenous. So, any valid procedure that rejects theaparbgeneity okduc should also reject
those ofexper. This is not however the case for the DWH-tests, as they alidagjected the partial
exogeneity of(exper, exper?). This result is not surprising becauséuc is likely endogenous
and DWH procedures do not account for that when testing tlogeneity of (cxper, exper?).
The outcomes of they? tests indicate strong evidence against the exogeneity tbf dabu.c and
(exper, exper?) as showed Table 1. Overall, these results unders¢drehow the use of DWH
tests to assess partial exogeneity hypotheses may be digjeand(2) the relevance of using”

tests when checking for partial exogeneity.
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Table 1. Testing for partial exogeneity efuc and (exper, exper?)

DWH-tests of the exogeneity efluc by keepingexper, exper?) exogenous

Statistics| Sample value p-value decision
T2 36.62 0.000 reject
Hi1 18.41 0.000 reject
Ho 18.58 0.000 reject
Hs 36.08 0.000 reject
DWH-tests of the exogeneity ¢¢xper, exper?) by keepingeduc exogenous
Statistics| Sample value p-value decision
T 1.44 0.236 do not reject
Hy 2.87 0.238 do not reject
Ho 2.89 0.236 do not reject
Hs 2.89 0.235 do notreject
2P-tests of the exogeneity efluc
Statistics| Sample value p-value decision
97 27.52 0.000 reject
7% 9.86 0.002 reject
74 9.91 0.002 reject
174 27.23 0.000 reject
9r-tests of the exogeneity Géxper, exper?)
Statistics| Sample value p-value decision
74 99.05 0.000 reject
2% 151.51 0.000 reject
74 170.94 0.000 reject
Dy 181.38 0.000 reject
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5. Conclusion

In this paper, we propose alternative tests for assessitiglpexogeneity in a linear IV regression.
The tests are easy to implement as they only require OLS anegkd¥essions. We provide an
analysis of their asymptotic behaviour (level and powerjciwishows that all tests are valid (level
is controlled) whether model parameters are identified ar®o0, the proposed tests robust to weak
instruments. Moreover, our analysis indicates that tessistency may still hold over a wide range
of cases where the overall identification fails, providediphidentification is satisfied. However,
all tests have low power when model parameters are compledtidentified.

A Monte Carlo experiment confirms our theoretical result® ilstrate our theoretical finding
through the workhorse example of returns to education framd1995). Our results clearly indi-
cate that standard exogeneity tests of the type proposedullyirb(1954), Wu (1973, 1974), and
Hausman (1978) are not appropriate to assess partial esibgbygpotheses, as they are valid only
when the regressors not being tested are exogenous. Foplexame find these tests fail to rejected
the exogeneity of experience variables in this model if atlon is assumed exogenous. In contrast,
all proposed tests in this paper find strong evidence agtiegixogeneity of both education and ex-
perience variables, separately. Overall, this applicatioderscores the relevance of usiat-tests

when checking for partial exogeneity.
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APPENDIX

A. Proofs

PROOF OFLEMMA 2.5 Assume that ranlIy ) = m. First, writed andd,. as:
i = u+ (W —=W)0=u+ Mz€0+ 9Pz, le = Mgu, = Mgu+ MgMzE0 (A1)

whereX = [Y, W] andéy = G.¢0/62. Hence, we have?’i/n = Z'u/n + 642"t /n and Z'i./n =
Z'Mgu/n + Z'MgMz£0/n. When Assumption.2-2.4 are satisfied and if further Hholds, then
X'u/n % (o, 0) =0 and

Ir'ozia+x, I1IreQzr

XX /n B Qy = >0, 2% /n % Qux = ( Q1 QuT ).

Q11 QT
This then implies thaZ’' Mg u/n = Z'u/n — (Z'X /n)(X'X /n)~ (X u/n) B 0. Sincev’¢/n % 0 from
Assumptior2.4-(a), we also geZ’ M M z£60/n 2 0 sothatZ'a., /n = Z' Mgu/n+2Z' Mg Mz£0 /n 5 0.
S0, we haves e = @, W/(n —m) — (@, Z/n)(Z'Z/n)"N(ZW/(n — m)) = &.W/(n — m) + 0p(1) B
ohe = 0ue + 0/ Ve ands? B o = 02 + 0y¢0. From Assumptior2.4-(b), we haver, = —6' Y so that
ohe = 0andol = o2 — 050 > 0 (by Assumptior2.2). Hence, we havéy = 6,¢0/57 % op = 0 and
Z'u)n = Z'u/n + 692"t /n 2 0. We shall now show that/’a/n % 0 andY’a/n % 0. Observe first
thatW'a/n = I'Z'u/n. SinceT' & T, and from @?) Z'ia/n 2 0, we havelV'a/n 5 0. By the same
way, we gett’a/n = Y'(u + Mz£€0 + 69 Pzu.)/n B 6ou. AS oy, = 0 under Assumption bl it is clear

thatY’a/n 20. The proof is similar for weak values #lyy, i.e.,Ilyy = ﬁ[l‘lo, Lol.

PROOF OFLEMMA 2.6  Firstly, from Lemma2.6, we havei = v + Mz&0 + 9Pz, = v+ Mz£0 +

Pz Py W0 + 0,(1), where P, = 4.(d.,a,) "4, is the projection matrix in the space spanned by the

*

residualsii.. So, we can writeZ @ //n andvt @t /\/n as:

zVat )vn = ZVut )+ 2 Mggo)n+ 2 PoPy WO/ (A.2)

v at /v = ot ut i+ ot M0/ + vt Py Py, W6/ /n. (A.3)

Observe thaZ+' M, = Z'M; = 0 andv M4£0//n = 0,(1) when Assumptior2.4-(a) holds, hence
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(A.2)-(A.3) become:

zVat)yn = ZVut/m+ 25 PaPy W/ n (A.4)

vtat /v = vt ut Ve + ot PoPa, WO/ A+ 0p(1). (A.5)

As Z'i/n = o0,(1), vE'Z/n = o0,(1) anda.W/yn = O,(1), we havev' PyP; W8/\n =
(vt Z/n)(Z' Z/n) ") (Z e 1) (0. 0in /0) (@ W//0) = 0,(1). Moreover, sincd® % T' (with T' = 0
whenIlyy = ﬁ[l’[o, To]), we haveo'W/n = (v'Z/n)T 5 0 so thato-'ut/y/n = v'u/y/n —
(W'W /n)(W'W /n)"'T(Z' //n) = v'u//n + 0,(1). By the same way, we get - Py Py W6 /\/n =

(Z+ Z/n)(Z2'Z/n)~ 1) (2", n) (@i /n) (@, W6 //n) = 0,(1) so thatwe can express (A.4)-(A.5) as:
Hat/yn n "u/\/n
(o) - (5 ) o
vt at/yn 0 Inp, v'u/v/n
where Ay, = I, — (Z’Z/n)f‘(f"(Z’Z/n)f‘)—lf" and ( Z'uf\/n ) KA ( Y zu ) N

0. o2 Qz 0
B R 8

and(2) HYW = \%[Ho, FQ].

(1) Suppose first that raKlyy) = m. Then, Ay, & A = I, — QzDIQI) IV =

N by Assumptior2.3. We shall now distinguish two casgg:) rank Iy ) = m,

1Z/2MQ1Z/2FQ;/2 and from (A.6) we have

7t /n d VYzia IZ/QMQ1/2FQ21/2 0 Yz
— = z
ULI&L/\/E l/}viﬂ 0 I‘my l/}vu
Q 0
~ N O7 0',3 z s QzL = 1Z/2MQ1/21" 1Z/2
Z
0 X,

(2) Suppose now thaflyyw = ﬁ[l‘[o, Iy and write /nl' = T + (Z2'Z/n)"*(Z2'¢/\/n) —
69(Z2'Z/n)~ (Z"i1. //n). From the proof in Lemm&.5, we havedy = 7,:0/6> 5 o4 = 0. From
Assumption2.3, we also haveZ’Z/n)~1(Z'¢//n) 4 Q}ld)zg- We now focus onZ’4., /v/n. Let us

decomposé@/y asM g = My, — Py, v and writeZ'a, //n as:

Z'i/n=Z'Mgu./vn = Z'Myu./vn—(Z'MygY/n)(Y' MyY/n)" (Y Myu./v/n)
= [ = (Z'MyY/n)(Y' My, Y/n) "I Z' My //n +

(Z' My Y /) (Y My, Y/n) " "' /v/n. (A7)
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Since Z'Myu./\/n = I, — (Z2Z/n)0X(Z2'Z/n)D) )2/ /0 = I
(Z'Z/n)T(T(Z2' Z/n)T) ') Z'u//n and v'u, /v/n = v'u//m 4+ 0/ Mz€0/n = v'u/y/n + op(1)
[because’Mz£0/+/n = o,(1) under K ], we can express (A.7) as:

Z'i )V = AgnZ'u/vn+ Agnv'u//n+ o,(1) (A.8)

where Ay, = [I; — (Z' My Y/n)(Y' My Y/n) 'IU|[I, — (Z'Z/n)D(X(Z'Z/n)D)~'1Y] and As, =
(Z' My Y/n)(Y' My Y/n)~'. As Tlyw = —=[M, Ty], we find: Z’MyY/n % 0 Y'MzY/n 5

N

ZU’ AQ" ﬁ) A2 = 1Z/2MQ12/2F§Q21/2 Where]-—‘§ = F() + QElwzg, and A3n ﬁ) 0. Hence,

we get andZ'in /i b Q) My Q' %z, and yAD 5 Tz = Q'*(Q°T: -
zZ

aeMQlZ/zp5 21/2w2u) = TI: (sinceocy = 0). Moreover, we haveA, 4 A, = I —

QzT(Y2) (P 2e) Q2T (W2e)) ' T(Whze) = Q) *Mgyap,, Q7' and (A.6) then implies that

1/~1 1/2 —1/2
Z /u /vn d VYziq _ 7 MQIZ/QF(wzg)QZ 0 Y74 . (A9)
vt/ Vyig 0 I, Vou
F(wzg)le/QwZuv itis clear tha),,"/*¢ ;. ; is independento@lz/QI‘(zng).
Since Q is fixed, ¢, ; is also independent of)}/*T'(¢4¢). So, conditionally onQy/*T'(v ) =

Because),.; = QIZ/QMQW
Z

V2T (x,), (A.9) implies that
Yz N |0, 02diag(QY*M vz 5 A.10
v QY™ N |0 o diag(@z "My yop,, Q7 “)}' (A.10)
vlta

By integrating (A.10) with respect to all possible realiaatof 1 ¢, the result follows.

PROOF OFLEMMA 3.1 (i) Assume first that,,, = 0. We have

Brs—Brv = YY)y Yal/m— (Y Pyt )ty Y Pyiat/n,
ViBrs = Bry) = (YHYE /)Ty at v — (VY Pyt )Ty Pauat v/,
YYYt/n = Y'V/n— (Y'Z/n)AD Vel (Z' Z/n)y/nl) el (Z'Y /n),

Y Pt /n = (Y My Z/n)(Z' My Z/n)~ (2 My Y/n),
vyYat/n = Ya/n— Y'W/n)(W'W /)" \(W'a/n),

Y Pyiat/n = (Y My Z/n)(Z' My, Z/n)~ (2 My i/n).

25



From Lemmas2.5-2.6, it easy to see tha¥ 'Y+ /n & =, = QI+ %, YV P, Y+ /n &
Y, = WQuIL YYal/n = WZYat o+ ot at/n B 0, andY ' Pyoat/n = WZY @t /n +
v Pyiat/n 2 0. So, we findB3, s — B, 2 0. Moreover, from results in by Lemm26, we have
yVat/ym = WzYat/ym+ ot at/yn S Wy + s = WQuQ7 Wy, + 1y, and
YY Pyt /vn =T ZY 0t [+ ot Pyuat)yn 5 T ye, = T1Q 4. Q5 4, So, from Lemma

2.6-(i), we gety/n (3,5 — Bry) = U5 where
Uy = 3 NQ Q5 g+ b)) — S QL Q7 gy ~ N[0, a2(5; - 271

(ii) Suppose now that,, # 0. It is easy to see from the above proof that' P,.at/n 5 0,

vtat/n B o, # 0 so that we obtain3, s — B,y — X:'ow. # 0. This then entails that

\/E(BLS - BIV) 5 co.

PROOF OFTHEOREM3.2 Leto,, = 0 and recall that
@gp = Kj(BLS - BIV)I Aj_l(BLS - BIV) (A.11)

whereX; andk;, j = 1, 2, 3, 4 are defined in (3.1). By noting that ath, 52,55 % ¢2 and by Lemma
3.4-(i), we havers; (BLs — Bry) 5 W ~ N |0, 03871 = =74)| forj = 2,3, 4 Ri(Brs — Bry) S
=5 ~ =N |0, o2(B:! —2;1)}, we havez? % e UH(E = )T ~ Sl (my),
7" 4 FUL(ET =227 ~ x*(my) forallj =2, 3, 4.
If 0w # 0, we have@j’-’ 4 +oo, forall j =1, 2, 3, 4, by applying directly results in Lemmn&l-(ii).
O

PROOF OFLEMMA 3.3 (i) Assume first that,,, = 0 and express, ¢ — 3, as:
Brs—Bry = (YY) tytat/m)— (vt Puyh) vyt pat. (A.12)

Sincellyy = —=[IIy, Ty], it is easy to see that-' YL /n & 5, andYL'at/n % 0, so that the first

/n
term in the right hand sight of (A.12) is,(1). Hence,3;s — B,y = —(Y X' P, Y L) 'YX Pyoat +
op(1). Now, write Y'P,.Y = (YXZY//n) (2" 2z /)" (zYY+)yn) and Y Pyiat =

yt'z+/n)y(zt z+/m)~Y(z+' @+ //n). By observing that we now have: Z+'ZLt/n 5
1/2 1/2 i/l d  ~1/2 1/2 1/2 ~1/2 _
2 Moyrg,o@2 > Z7Y7 V0 = Q7 Mayar(y, Q7 T + @y Myyepg, @z " Wze =

1/2 1/2 - ' 4 1/2 ~1/2
( Z/ Mle/zF(wzg)QZ/ )Ty + Q5 Y z,), andZ+-at /y/n = QZ/ MQ1Z/2P(¢Z€)QZ "4, (by Lemma
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2.6), it follows thatY'P,.Y % W, = (IIy + Q51¢ZU)'Q12/2MQ1,QF( b2 VAT, + Q') and
zZ
YY Pyt S (Mo + Q5 0 ,,) QY M 0T, )Q_l/Qz/;Zu. Thus we get

o )
Brs =B % Ws= Wl +Qp 2 Q) Myapy, Q7 "z (AL3)

Becausel/,). - 2% 2, is independent o)}/ °T'(1) ) andy) 4, is also independent af ,,, un-

Ty )Q
der H;, with a little manipulation (and using results in Lemr@#-(ii)), we find that conditionally on

(wzva wzg) = (3017302)7

2y—1
‘I’ﬂ |¢2u—1hwzg /20 (z )N N [0’ U’u‘I’Zv(xlva)} (A'14)
where Wz, (z1,z2) = (Ilp + QZ x1) QZ QYT (22 )QZ (Ho + QZ x1). By taking the integral with
respect to all possible realizatios;,,, 1 ¢) = (v1,72), the result follows.
(ii) Suppose now that,, # 0. The proof is similar to those ifi). Firstly, note that we now have

Y+'at/n % o, and the other limits irfi) do not change. So, we have

_ 4 - -
Brs—Brv — T lou.+ s (A.15)

1/2

Now, observe thaMQ1/2 Q I/QwZu is still independent ofy /
z

60 ['(1z¢). However, ¢, andv,

are correlated. Sinc@),. ¥ ,. ¥ ) is Gaussian by Assumptioa3-(b), we haveE(y 4, |y, v,

) = E@Wgz, lv,) = ¥z.p.. Wherep,, = X lo,. As a result, we haveE(p,, +
x —1 —1 1/2 —1/2 —1
‘I’ﬂ |¢Zm¢zg) = Pou — lI’ZU(I_IO + QZ wZU)/QZ/ Mleﬂr‘(wZ&)QZ / wZ’Up’Uu = ‘PZU(HO +

QZ Vz0) QZ QY T (¥, )QZ H()pvu = u. So, we get
Pou T ‘i’ﬂ |¢2u:11,?b25: 12/21"(12) ~ N ['u(ml’mQ)’ 0’3‘1’23}(%1,%2)} (A16)

wherep(zy, 2) = ¥, (21, 22) (T, + lexl)’QIZ/QMle/QF(m)leﬂHOpw. By integrating (A.16) with

respect to all possible realizations(aef,,, ¢z, ), the result follows.

PROOF OFTHEOREM3.4  Note first that we still havé?, 5% 5 62 whenIlyy = —=[II,, I'y], whether

1 [
ﬁ
ouy = 0 0rnot. Moreover, we can write” as:

5 = (y — YBQSLS)/MVV(?J - YBQSLS)/”
= ly— YBLS - Y(BQSLS - BLS)]/MVV ly — YBLS - Y(BQSLS - BLS)]/”

= & - 2(y — YBLS)/YL(BQSLS - BLS)/” + (BQSLS - BLS)/(YJ_,YL/H)(BQSLS - BLS)
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= &+ (BQSLS - BLS)/(YL/YJ_/”)(BQSLS - BLS) (A.17)

where the last equality holds becauige- Y3, 5)'Y+ = 0. So, it follows from Lemma.3 that5> % 52
02 + W0, W5 =02 (140,28, 5,%,) > 02, where® is defined by (A.13).

Suppose that,,, = 0. From Lemma3.3-(i), we haveB, ¢ — 3, - ¥4 so that

P
D

myUQ V0,0, 97 2 3\1:'5\IIZU\I:5, (A.18)
2

70 & TG W, B, = 2,302, = (1+0,2F,5,9,) < L. (A.19)
g

u

Because M1 /xp, )Q;/%Zu is independent ofQ}/°I'(1,,) and ¢, is also independent of

¥y, under H, From (A.14) we have¥ N [0, 02® ) (z1,22)] so that

|'¢’Zu—11,?bzg I/QF(:”?)N

I) d
Hence, we haveZ; |’¢’Zu:11g’¢)z§:le/2F(m2)_>
1,2 PP d 2 P gp 4
my X (my), 24 |wZU=x17wZ§= Vepey X (my), and 25, 7 |wZu:x11wZ§=Q1Z/2F(JC2)4>

o2, (z1,22)x*(my). As the conditional asymptotic distribution o? and 27 does not depend

on (z1,22), we have?? % L2(m,), 2% % y2(m,), unconditionally. However, the con-
Y

13 I 2
U_i‘I’B‘I’ZU‘IJB |’¢’Zu:9317’¢’Z§:le/2r(932)N X (my)

ditional asymptotic distribution of#} and %% depends on(zi,zs) through o2, the uncondi-

tional distribution is obtained by integrating with respe possible values of(xzi,x2); where
02lenws ~ Golrr,m2) = (14 0PN (0, 020, ) (21,35) TN (0, 028} (w1, 20))] 71 =
[+ ot 2N (0, 02,1 (21, 22)) |2 L. So, part(a) and(b) of TheorenB.4 follow.

Suppose that,, # 0. From LemmaB.3-(ii), we have3, s — B, % p,. + ¥ 5 so that

d = = q 1 = =
@1;0 - W(pvu+‘1’5)lqlzv(pvu+‘1’5)ﬂ @f - U_g(pvu+‘IIB)I‘IIZU(pvu+‘IIB)7
Y- u u
2
; o -~ - '
‘@f i O—ZQU (pvu + ‘I’ﬂ)l‘IJZ’U (pvu + ‘I’ﬂ)v j=2,3. (AZO)
Furthermore, we can see from (A.16) thato?, |, 4, ~ (w1, 22) =
_ — _ d
L+ on ' S0PN (w1, 22) — s 02851 (21, 22)) |27 and  Alo -

X (my oy W (e, @)1, Phleres 5 X (myslloy U (e, w)|?) and 25, Py, S
d(x1,22)X2(my ; o7 ' ¥/ (w1, 22)||). Part(c) and (d) of Theorem3.4 follow by integrating with

respec(vy,,, ¥ z¢).

B. Additional ssmulation results
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Figure 3. Size and power at nominal le¥éh when identification is strong or partiat, = 300
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Figure 4. Size and power at nominal leéh when identification is weaky = 300
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Figure 5. Size and power at nominal level 5% when the redumed érrors are correlated under the null hypothesis
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