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Abstract: 

Using an extension of the standard CAPM beta we decompose the beta of Japanese 

banking stocks into diffusion and jump components using high frequency data from 2001 

to 2012. We find that jump betas on average are larger than diffusion betas, indicating 

that Japanese banking stocks respond differently to information associated with 

continuous and discontinuous market movements. Larger banks are more sensitive to 

discontinuities than their counterparts; high leveraged banks are more exposed to 

unexpected market-wide news whereas profitable banks are equally sensitive to both 

continuous and jump market moves. By allowing for asymmetric preferences of investors 

for losses versus gains we show that diffusion and jump betas both carry large premia in 

both up and down markets, but that these premia differ substantially during periods of 

economic stress from those present during normal conditions.  
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1. Introduction 

The central issue in asset pricing theory is to identify premiums that investors require for 

bearing different types of systematic risks. The Capital Asset Pricing Model (CAPM) by 

Sharpe (1964) and Lintner (1965) postulate that exposure to market risk is priced in 

asset returns. Over the next several decades, important works identified other types of 

risks as well that are important both in academia and practice (for a review, see Nagel 

(2013)). More recently, in the wake of the 2008 financial crisis, several works highlight 

the importance of understanding the role of rare events, or jump1 events, in asset prices.  

events, in asset prices. In particular, Todorov and Bollerslev (2010) and Bollerslev and 

Todorov (2011) find that jumps in market returns and volatility play an important role 

in observed equity risk premium. In other words, investors' fear of jump events is priced 

in market returns. Bollerslev et al. (2015) build on these prior works and show that the 

predictability of equity risk premium is largely explained by investors' compensation for 

jump tail risk, which further establishes the role of jumps as a risk factor. However, the 

authors did not provide asset pricing test of systematic jump and diffusion risk factor in 

financial firms’ security returns. Given this background, the main objective of this paper 

is provide a comprehensive empirical investigation of pricing time-varying jump and 

diffusive systematic risk in the cross-section of financial firms’ stock returns.   

Identifying the systematic risk factors among financial firms is important both in 

understanding the pricing generally and for public policy purposes. Financial firms make 

up a substantial fraction of the domestic equity market. Indeed, they have comprised 

almost 15% of the market value of all firms of equities listed on Tokyo Stock Exchange 

(TSE) in recent years, and their stock returns have been found to have a significant 

relationship with future economic growth. Moreover, extensive deregulation of financial 

and banking firms’ asset and liability powers in the 1980s and 1990s increased the 

importance of regulatory control over the risk-taking behavior of these firms. Following 

years of discussion over how best to modify Basel I capital requirements, the recently 

adopted Basel III standards increasingly emphasize the use of market discipline as a 

major regulatory device. However, using market factors to evaluate and control risk-

                                                           
1 Jumps are infrequent but abnormal changes in stock prices, often driven by significant information shocks 
or liquidity shocks. In the continuous-time literature, a price movement of 3% (when the local volatility is 
less than 0.5%, thus of more than six standard deviations in volatility units) is typically modeled as a jump, 
that is, a discontinuous variation of the price process. 
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taking behavior of banks by either private market forces or public regulators requires an 

understanding of the risk factors that are priced in security markets for these firms. 

Moreover, the exclusion of financial firms can be questioned on both theoretical and 

empirical grounds. The theoretical structure originally developed by Modigliani and 

Miller (1958, 1963) demonstrates that leverage can change the risk profile (beta) of a 

firm but it does not invalidate the central principles of the CAPM. In this sense, it would 

be more desirable if the pricing model is generally applied rather than restricted to 

nonfinancial corporations.  

In this paper, we examine the behavior of diffusive and jump systematic risk for the 

Japanese banking sector and how investors price these two systematic risks under 

different market conditions. We find that both jump and diffusion systematic risks are 

significantly priced in the cross-section of bank stock returns. We also demonstrate that 

investors exposed to jump and diffusion systematic risk on their investment in Japanese 

bank equities receive excess positive returns in upturn market, but that they suffer excess 

losses in downturn market.  

The particular interest in studying the Japanese market is driven by its specific financial 

and governance system (relationship-based) and there are only few empirical studies of 

the Japanese market. The contribution of our study is to add to the existing literature 

based essentially on US market empirical and theoretical results are less studied 

countries, in particularly, the Japanese market. Also, the Japanese banking sector is 

strongly developed, but with a distinctly different character from that of most Western 

economies, including particularly strong direct linkages between the banks and 

companies in the real economy – strong enough for a particular form of ‘wealth’ contagion 

to emerge between the financial markets and real economy through the complex web of 

accounting interactions, as shown in Kiyotaki and Moore (2002). CAPM estimates for the 

banking sector are relatively rare, and recent estimates for Japan are rarer still; King 

(2009) provides empirical estimates for banking sectors across a range of countries, and 

demonstrates the differences in Japan, where relatively high beta have been maintained 

for over two decades, while a group of papers provide evidence for samples prior to the 

21st century; Elyasiani and Mansur (2003), Gultekin et al. (1989), and Andersen et al. 

(2000) characterize volatility in the Japanese stock market based on a short sample of 

high frequency 5 min Nikkei 225 index return. To our knowledge there is no study of 
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CAPM for Japan which takes account of recent advances in high frequency financial 

econometrics although Andersen et al. (2006), Todorov and Bollerslev (2010), all 

evidence that using high frequency data improves estimation of beta over traditional 

regression based procedures using lower frequency data. 

In the classical capital asset pricing model (CAPM), systematic risk, measured by beta, is 

determined by the asset’s covariance with the market over the market variance. The 

CAPM assumes that security returns are generated by a continuous process. However, 

recent studies on the stochastic behaviour of the stock market generally agree that stock 

returns are generated by a mixed process with a diffusion component and a jump 

component. In this sense, the CAPM beta may only capture a part of a mixed process, and 

the standard CAPM beta is at best a ‘summary proxy’ for the systematic risk of a mixed-

process, i.e. a weighted average of the diffusion component and the jump component. 

Therefore the beta of the CAPM is not an accurate risk measure when the price process 

has jumps. If so, it would be prudent to be able to split the standard beta into two 

component betas so as to capture the two risks separately: one component for continuous 

and small changes (diffusion beta) and the other for discrete and large changes (jump 

beta). These two types of risk are different in nature and require different treatments. 

They should be differently priced, hedged and managed. Consequently, being able to 

estimate them separately has implications for financial services, and hence the wider 

economy.  

The paper uses developments in high frequency financial econometrics by Todorov and 

Bollerslev (2010) to estimate beta for the Japanese banking sector using high frequency 

intra-day data. The unique aspect of this approach is to decompose the systematic risk 

into a continuous and discontinuous component, following the asset pricing literature 

which suggests the evolution of prices follows a continuous process such as Brownian 

motion augmented with discrete jump events. The expected stock return is dependent on 

both sources of risk. The diffusive component of the return is determined by the 

covariance between the diffusion process driving the market return and the stock 

processes, a well-known continuous-time analogue of the discrete time β-representation. 

The jump component of the return is captured by the covariance between the jump-

distributions of the market return and stock processes. We decompose standard CAPM 

beta into diffusion beta, attributable to general market volatility and jump beta associated 
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with sudden disruption in the price process due to arrival of new information in the 

market. We aim to explain how individual stocks are influenced by systematic diffusive 

risk and jumps risk and we find that jump beta exceed the diffusion beta. The motivation 

for this separation comes from a learning argument akin to the one put forward in Patton 

and Verardo (2012) regarding short-term changes in beta in response to firm earning 

announcements. They hypothesize that beta may temporarily increase around earnings 

announcements as the market pays attention to the announcements in order to absorb 

any new information the announcements may contain and convey. Combining this 

argument with the known association of jumps with the arrival of unanticipated news2, 

we expect that jump beta magnitudes to exceed diffusion beta magnitudes.  

We estimate jump and diffusion beta for Japanese banking stocks for the period from 

January 2001 to December 2012. Our empirical findings rely on a 5–minute intraday 

sample frequency.3 As expected, the jump betas exceed the diffusion betas for almost all 

banks in almost all time periods, consistent with the existing literature for firms in the US 

in Alexeev et al. (2017), Bollerslev et al. (2015), Todorov and Bollerslev (2010) and Indian 

banks in Sayeed et al. (2017) and the analysis of Neumann et al. (2016) that jumps play 

an important role in determining risk premia for the S&P500. We characterize the 

behavior of the price series for selected Japanese banks using the Barndorff-Nielsen and 

Shephard (2006), hereafter, BNS, jump detection test to establish evidence for the 

existence of jumps. We find 272 jump days out of 2866 trading days, corresponding to 

115 jump months out of 144 months, where jumps are detected in the market. We find 

that on average the jump betas are usually 40% higher than the continuous betas. These 

estimates suggest that when news is sufficient to disrupt prices, that is to cause a jump, 

the speed with which news is disseminated into the market is likely to be even faster than 

previously estimated using the combined continuous and jump price process as in Patton 

and Verardo (2012). This is important for risk managers: if an asset behaves differently 

during a severe market downturn than it does at other times, this information offers the 

potential to significantly improve calculations such as Value at Risk (VaR). Moreover, if 

assets are combined in well-diversified portfolio, then an asset’s systematic jump risk is 

                                                           
2 Dungey and Hvozdyk (2012), Lahaye et al. (2011), and Andersen et al. (2007), among others. 
3  Estimates for diffusion, Jump and standard betas are computed on a month-by-month basis. High 
frequency data permits the use of 1-month non-overlapping windows to analyse the dynamics of our 
systematic risk estimates. 
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more relevant than the asset’s total jump risk. This highlights the importance of 

decomposing systematic risk into its diffusion and jump components.  

We relate the variation in betas to firm characteristics and find that financial leverage, 

capital adequacy, and firm size have significant impacts on each of the jump and 

continuous beta estimates. These relationships are informative for the debate about 

reducing systemic risk via options to constrain leverage or increase the capital base of 

the banking sector. We show that financial leverage has a positive effect on beta, 

indicating that a more heavily leveraged firm is more exposed to market movements, 

although we demonstrate that the impact of changes in leverage are economically very 

small. Greater capital adequacy also reduces both jump and continuous beta, but again 

requires relatively large changes to have a substantial economic effect. Thus, our results 

support the direction of the impact of policies to decrease leverage and increase the 

capital base on reducing systematic risk, but throw some doubt on the size of the changes 

needed to obtain an effective impact in reducing risk in the financial sector.  

In addition to beta relationships, Bollerslev et al. (2015) have found the risk premiums 

associated with jump beta is statistically significant, while the diffusion beta does not 

appear to be priced in the cross-section. In another independent study on asset pricing 

Pettengill et al. (1995) showed that market premiums differ between up-markets and 

down-markets. These multiple insights lead one to expect not only an analogous dual beta 

behaviour over the entire sample periods but also risk-premium differences between up-

markets and down-markets.  Motivated by these empirical findings, we introduce and test 

a new 4-beta CAPM model by combining the diffusion and jump betas of Bollerslev et al. 

(2015) and the conditional betas of Pettengill et al. (1995) into a single model to detect 

any significant differences under differing market conditions. The main empirical 

contribution of this paper is to allow the state of the market to have an effect on the risk-

return tradeoff. The motivation for this extension lies in the investor’s asymmetric 

preferences between up-markets and down-markets. Investors care differently about 

downside losses as opposed to upside gain and demand additional compensation for 

holding stocks with high sensitivities to downside market movements. Our model 

includes upside market diffusion, upside market jump, downside market diffusion, and 

downside market jump components. Because of this decomposition, the model in this 

paper is sufficiently general to accommodate the research purpose of revealing how 
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different factors are priced. Another feature of the model is that it explicitly allows 

individual stock prices to respond to the separated market components with different 

magnitudes. Accordingly, we can estimate the various exposures of a stock price to 

different risk factors and the associated risk premiums and specifically identify the most 

important systematic risk components that explain stock returns.  

In the context of a portfolio of assets, we investigate whether down market risk is priced 

higher than up market risk. In particular, we carryout significance tests for the price 

difference between diffusion and jump risks in different market states. This has practical 

implications for pricing of diffusion and jump risks and can have a direct impact on 

investor’s decision making. It may also shed some light on how investors react to various 

types of uncertainty. Bearing non-diversifiable jump risk is significantly rewarded, as is 

evident from the expensiveness of short maturity options written on the market index 

with strikes that are far from its current level; see Christoffersen et al. (2015) and 

Driessen and Maenhout (2013) for effects jump risk on options. 

We find evidence of significant, and differing, relationships between each of the two 

measures of beta and stock returns. The estimated risk premia of the up and down 

markets are not significantly different from the corresponding negative risk premia. The 

estimated risk premia for both the diffusion and the jump risks for the two market states 

are found to be symmetric. However, the estimated risk premia between diffusion risk 

and jump risk for the up and down markets are not symmetric during the crisis and post-

crisis periods. The results imply that investors in the Japanese market respond differently 

to diffusion risk and jump risk in the periods of up and down markets associated with 

different degrees of financial stress. Further, we find that large banks tend to have 

relatively high jump betas. Hence these banks deliver higher returns. We also find that 

the variation of jump beta is more dynamic than that of the standard and diffusion beta. 

Our finding that these relationships differ for the jump risk and diffusion risk components 

aligns with existing literature suggesting the need for a different risk premia for each 

component (Yan 2011; Pan 2002). Consistent with Bollerslev et al. (2015), we find 

evidence for a positive risk-return relationship, as jump beta is associated with higher 

returns on average than diffusion beta, consistent with evidence for bank equities in the 

US in Schuermann and Stiroh (2006) and Viale et al. (2009). 
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The results are robust to using both a portfolio approach and Fama–MacBeth regressions, 

different sample periods, as well as to the inclusion of a battery of control variables 

(including controls for size, BM ratio). Our jump market risk factor also wins the “horse-

race” between the bank-specific risk factors previously proposed in the literature on 

asset pricing. Since a standard assumption asset pricing (“realized returns are a good 

proxy for expected returns”) may not hold, we also estimate ex-ante measures of 

expected returns and find a consistent results.  Our jump-diffusion two-beta asset pricing 

model provides an alternative to the CAPM. It prices both jump and diffusion risks. The 

empirical tests of this paper show that it is a better asset pricing model than the CAPM, 

particularly for the period when jumps are included in the price process. In a resulting 

modified CAPM expected returns are still linear in beta, but additional premia are 

required to compensate the investor for taking on jump risk. 

The remainder of this paper is structured as follows. Section 2 discusses the 

methodological framework. We discuss our sample description in section 3. Section 4 

presents the empirical results. Section 5 contains robustness check. Section 6 concludes 

the paper. 
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2. Modelling Framework  

To investigate how diffusion and jump systematic risks in stocks are priced, we set up a 

model for stock price processes that explicitly incorporate diffusion and jump 

components. We then use Todorov and Bollerslev (2010)’s approaches to measure the 

exposures of a stock’s returns to diffusion and jump risks.  

2.1. Capital asset pricing model 

Consider a one-factor capital asset pricing model (CAPM): 

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝛽𝑖,𝑡𝑟𝑚,𝑡 + 𝜀𝑖,𝑡,   𝑖 = 1, … . . 𝑁                                                                                            (1) 

where 𝑟𝑖,𝑡  is the monthly stock return on stock i, and 𝑟𝑚,𝑡 is the aggregate market returns 

at time t;  𝛼𝑖 is the constant term for the asset i; and the idiosyncratic risk 𝜀𝑖,𝑡  is assumed 

to uncorrelated with 𝑟𝑚,𝑡. The absence of arbitrage implies that: 

𝐸(𝑟𝑖,𝑡) =  𝑟𝑓,𝑡 + 𝛽𝑖,𝑡𝛾𝑚,𝑡                                                                                                                      (1𝑎) 

where  𝑟𝑓,𝑡 and 𝛾𝑚,𝑡  denote the risk-free rate and the premium for bearing market 

systematic risk. Eq. (1a) implies that in the cross-section of expected returns is solely 

driven by the variation in betas.   The CAPM model basically depends on stock and market 

returns, which in turn, depends the underlying prices of individual stocks. It is now 

widely agreed in the literature that financial return volatilities and correlations are time-

varying and returns follow the sum of a diffusion process and a jump process. 4 

For the above reasons, we define that the log-price (𝑝𝑡) process of an asset at time t 

follows a continuous-time jump-diffusion process defined by the stochastic differential 

equation as follows:  

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + 𝑘𝑡𝑑𝑞𝑡, t ∈ [0, T],                                                                                (3)  

Where 𝑑𝑝𝑡 is the instantaneous change in logarithmic price for an asset at time t; 𝜇𝑡 is the 

instantaneous drift of the price process and 𝜎𝑡  is the diffusion process; with 𝑊𝑡  a 

standard Brownian motion. The first two terms correspond to the diffusion part of the 

total variation process. The diffusion part which is responsible for the usual day-to-day 

price movement. The changes in stock prices may be due to variation in capitalization 

rates, a temporary imbalance between supply and demand, or the receipt of information 

                                                           
4 See, for example, Merton (1976), among others. 
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which only marginally affects stock prices. The final term, 𝑘𝑡𝑑𝑞𝑡  refers to the jump 

component of 𝑝𝑡 , where 𝑞𝑡  is a counting process such that 𝑑𝑞𝑡 = 1 indicates a jump at 

time t, 𝑘𝑡 is the size of jump at time t conditional on a jump occurring, which assumed to 

have mean 𝜇𝑗  and standard deviation 𝜎𝑗 . The jump part which is due to the receipt of any 

important information that causes a more than marginal change (i.e. abnormal change) 

in the price of stock. The arrival of this kind on information is random. The number of 

information is assumed to be distributed according to a poisson process. 

If the return of stocks should be divided into jump part and diffusion part certainly the 

risk associated with returns of securities should be decomposed into two parts, too. The 

CAPM states that beta, a diffusion risk, is systematic and non-diversifiable. So is the jump 

risk when taking both diffusion process and jump process into account. The presence of 

jump variations in both individual assets and aggregate market affect co-variance 

estimations and consequently the estimations of realized beta and systematic risk. Thus 

it would be prudent to disentangle the jump component and the diffusion component in 

prices because they are basically two quite different sources of risk; see, e.g., Pan (2002) 

and Todorov (2009).  

2.2. Decomposing systematic risks: diffusion and jump components 

Our framework motivating the different betas and the separate pricing of  diffusion and  

jump market price risk and relies on the theory originally developed by Todorov and 

Bollerslev (2010) for decomposing market returns into two components: one associated 

with  diffusion price movement and another associated with jumps. Hence in the presence 

of both components, Eq. (1) becomes: 

𝐸(𝑟𝑖,𝑡) =  𝛼𝑖 + 𝛽𝑖,𝑡
𝑐 𝑟𝑚,𝑡

𝑐 + 𝛽𝑖,𝑡
𝑗
𝑟𝑚,𝑡
𝑗
+ 𝜀𝑖,𝑡                                                                                             (4) 

where 𝑟𝑖,𝑡  is the stock return on stock i, 𝛼𝑖is a drift term, market risk (𝑟𝑚,𝑡) is modelled as 

a combination of a continuous ( 𝑟𝑚,𝑡
𝑐 )  and jump component   (𝑟𝑚,𝑡

𝑗
) , and 𝛽𝑖,𝑡

𝑐  and 𝛽𝑖,𝑡
𝑗

 

denotes the responsiveness of each stock’s movement to the diffusion and jump 

components of market risk and 𝜀𝑖 denotes the idiosyncratic term which may also made 

up a continuous and jump component. Standard factor models of risk implicitly assume 

that an asset’s systematic risk is uncorrelated with jumps in the market (i.e. that the 
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asset’s beta does not change on days when the market experiences a jump).5 Eq. (1) does 

not distinguish between the diffusion and jump components of total return, but does 

decompose total returns into systematic (𝛽𝑖,𝑡𝑟𝑚,𝑡)  and nonsystematic (𝛼𝑖 + 𝜀𝑖,𝑡 ) 

components. Any market jump is embedded in 𝑟𝑚,𝑡,  while any nonsystematic jump 

unique to firm i is included in the error tem. When the systematic risks exposure of a firm 

to both  diffusion and jump price movements are identical, i.e. 𝛽𝑖,𝑡
𝑐  =  𝛽𝑖,𝑡

𝑗
, then, the two-

factor market of (4) model collapses to the usual one-factor market model, which relates 

the stock return 𝑟𝑖,𝑡  to the total market return  𝑟𝑚,𝑡 = 𝑟𝑚,𝑡
𝑐 + 𝑟𝑚,𝑡

𝑗
. The restriction that 𝛽𝑖,𝑡

𝑐  

=  𝛽𝑖,𝑡
𝑗

 implies that the asset responds in the same way to market diffusion and jump price 

movements -or intuitively that the asset and the market co-move in the same manner 

during “normal” times and periods of “abrupt” market moves. If, on the other hand, 𝛽𝑖,𝑡
𝑐  

and 𝛽𝑖,𝑡
𝑗

 differ, empirical evidence for which is provided below, the cross-sectional 

variation in the diffusion and jump betas may be used to identify their separate pricing. 

The literature suggests that the two betas are not the same, i.e. the reactiveness of an 

asset return of the two components of systematic risk can be different, denoted by 𝛽𝑖,𝑡
𝑐  

and 𝛽𝑖,𝑡
𝑗

 respectively. Hence Eq. (1a) could be written as,  

𝐸(𝑟𝑖,𝑡) = 𝛼𝑖 + 𝛽𝑖,𝑡
𝑐 𝛾𝑚,𝑡

𝑐 + 𝛽𝑖,𝑡
𝑗
𝛾𝑚,𝑡
𝑗
                                                                                                     (4𝑎) 

Where 𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑗
 represent the systematic risks associated with the market diffusion 

and jump movements, and 𝛾𝑚,𝑡
𝑐  and 𝛾𝑚,𝑡

𝑗
 are the premiums for bearing these two 

systematic risks. This two-beta model hypostatized that the market rewards erratic price 

movements differently than the smooth variations, and thus the risk premium for the two 

different betas might be different. 

2.3. Diffusion and jump betas estimation approach 

Given that market returns contain two components, both of which display substantial 

volatility and which are not highly correlated -with each other, this raises the possibility 

that different types of stocks may have different betas with two components of the 

                                                           
5 There is no need to test for a jump in the individual stock price, as the estimates of the diffusion and jump 
betas depend only on whether the factor was diffusion or experienced a jump. We focus explicitly on 
systematic jump risk, as measured by the exposure to non-diversifiable market-wide jumps and the jump 
beta since the seminal paper by Merton (1976) hypothesizes that jump risks for individual stocks are likely 
to be non-systematic. 
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market. The decomposition of the return for the market into separate diffusion and jump 

components that formally underlie 𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑗
 in equations (4a) are not directly 

observable. Instead, we assume that prices are observed at discrete time grids of length 

M over the active trading day[0, 𝑇].6  

We start by assuming that the intraday stock price processes for the aggregate market 

index, denoted by 𝑑𝑝𝑚,𝑡, and the ith stock, denoted by 𝑑𝑝𝑖,𝑡, follow general diffusion-time 

processes. To allow for the presence of jumps in the price process, we consider the 

following specification for stock i and aggregate market m. The log price process evolves 

as follows7: 

For the market, 

𝑟𝑚,𝑡,𝑠 ≡ 𝑑𝑝𝑚,𝑡 = 𝛼𝑚,𝑡𝑑𝑡 + 𝜎𝑚,𝑡𝑑𝑊𝑚,𝑡 + 𝑘𝑚,𝑡𝑑𝑞𝑚,𝑡,                                                                     (5) 

and for the stock 𝑖 = 1,… , N, 

𝑟𝑖,𝑡,𝑠 ≡ 𝑑𝑝𝑖,𝑡 = 𝛼𝑖,𝑡𝑑𝑡 + 𝛽𝑖,𝑡
𝑐 𝜎𝑚,𝑡𝑑𝑊𝑚,𝑡 + 𝜎𝑖,𝑡𝑑𝑊𝑖,𝑡 + 𝛽𝑖,𝑡

𝑗
𝑘𝑚,𝑡𝑑𝑞𝑚,𝑡 + 𝑘𝑖,𝑡𝑑𝑞𝑖,𝑡,                     (6) 

where, 𝑊𝑚,𝑡 and 𝑊𝑖,𝑡 are standard Brownian motions for the market and asset i.𝑊𝑚,𝑡 and 

𝑊𝑖,𝑡 are orthogonal to each other, and 𝑊𝑖,𝑡and 𝑊𝑗,𝑡  for 𝑖 ≠ j can be correlated; 𝛼𝑚,𝑡  and 

𝛼𝑖,𝑡denote the diffusive volatility of the aggregate market and stock i, respectively; and 

𝑞𝑚,𝑡 and 𝑞𝑖,𝑡  refer to the pure jump Levy processes in the aggregate market and stock i, 

respectively. The individual jumps do not arrive together with market jumps, but 𝑑𝑞𝑖,𝑡and 

𝑑𝑞𝑗,𝑡 for 𝑖 ≠ j can be correlated. 𝛽𝑖,𝑡
𝑐 and 𝛽𝑖,𝑡

𝑗
measure the responsiveness of an individual 

stock to the diffusion and jump component of market risk. In this framework,[𝛽𝑖,𝑡
𝑐 , 𝛽𝑖,𝑡

𝑗
] is 

assumed constant throughout each day but can change from day to day.  

By explicitly allowing the individual loadings, or betas, associated with the market 

diffusive and jump risks to be time-varying, this decomposition of the continuous and 

discontinuous martingale parts of asset i ’s return into separate components directly 

related to their market counterparts and orthogonal components (in a martingale sense) 

                                                           
6 As empirical studies rely on discretely sampled returns; we denote discrete-time intraday returns on 
trading day t as  
𝑟𝑡,𝑠 = 𝑝𝑡,𝑠 − 𝑝𝑡,𝑠−1, 𝑠 = 1,… . ,𝑀; 𝑡 = 1,… . , 𝑇                                                                        

where 𝑝𝑡,𝑠 refers to the 𝑠 th intra-day log-price for day t; T is the total number of days in the sample and M 

refers to the number of intraday equally spaced return observations over the trading day t, which depends 
on the sampling frequency. As such, the daily return of the active part of the trading day is  𝑟𝑡 = ∑ 𝑟𝑡,𝑠

𝑀
𝑠=1 . 

7 The notation here is simplified relative to that in Todorov and Bollerslev (2010), see their article for more 
details. 
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is extremely general. For the diffusive part, this entails no assumptions and follows 

merely from the partition of a correlated bivariate Brownian motion into its orthogonal 

components. For the discontinuous part, the decomposition implicitly assumes that the 

relation between the systematic jumps in the asset and the market index, while time-

varying, does not depend on the size of the jumps. See, Bollerslev et al. (2015) for more 

details.  

In order to disentangle the 𝛽𝑖,𝑡
𝑐   and 𝛽𝑖,𝑡

𝑗
, Todorov and Bollerslev (2010) propose a non-

parametric beta estimation technique using multipower covariation/variation between 

the returns of individual stocks and the market portfolio for given diffusion and jump 

components respectively. They show that 𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑗
 can be theoretically identified.   

Consider the estimation of diffusion betas. Suppose that neither the market or nor stock 

i, jumps, so that 𝑞𝑚,𝑡 ≡ 0 and 𝑞𝑖,𝑡 ≡ 0 almost surely. For simplicity, suppose also that the 

drift terms in Eq. in (5) and (6) are both equal to zero, so that,8 

 𝑟𝑖,𝑡,𝑠 = 𝛽𝑖,𝑡
𝑐 𝑟𝑚,𝑡,𝑠 + 𝑟𝑖,𝑡,𝑠̃  ,     where  𝑟𝑖,𝑡,𝑠̃ ≡ ∫ 𝜎𝑠

2𝑡

0
𝑑𝑠 ,  

for any s ∈ [0, t]. In this situation, the ratio of the intra-day covariance between an asset 

and the market, and the market with itself will estimate diffusion beta using high-

frequency intraday returns. The diffusion beta is given by 

𝛽𝑖,𝑡
𝑐 =

∑ 𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠  
𝑀
𝑠=1

∑  (𝑟𝑚,𝑡,𝑠)
2
 𝑀

𝑠=1

,   𝑖 = 1,… . . 𝑁.                                                                                              (7) 

In general, the market may have a jump over the [0, t] time-interval and the drift terms 

are not identically equal to zero. Meanwhile, it follows readily by standard argument that 

for 𝑀 → ∞, the impact of the drift terms are asymptotically negligible. However, to allow 

for the possible occurrence of jumps, the simple estimator defined above needs to be 

modified by removing the jump components. In particular, following Todorov and 

Bollerslev (2010), we consider their ratio statistics for the discretely sampled data series 

which consistently estimate the diffusion beta for 𝑀 → ∞, under very general conditions. 

These are: 

                                                           
8 The drift term [i.e. 𝛼 in Eq. (1)] has no effect on the asymptotic behavior of the beta estimates. In practice, 
for the frequencies used in this paper, the drift is negligible and very small to be of importance.  
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�̂�𝑖,𝑡
𝑐 =

∑ 𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠 𝕝{|𝑟𝑡,𝑠|≤𝜃} 
𝑀
𝑠=1

∑  (𝑟𝑚,𝑡,𝑠)
2
 𝕝{|𝑟𝑡,𝑠|≤𝜃} 

𝑀
𝑠=1

                                                                                                          (8) 

Where,𝕝{|𝑟𝑡,𝑗|≤𝜃}  is the indicator function, 

𝕝 = {
1
0
 𝑖𝑓 {|𝑟𝑡,𝑠|≤𝜃}

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                                                (9)   

based on the truncation level, 𝜃, for diffusion component. Intuitively, the estimation of 

the diffusion beta employs only the observations that does not contain any discontinuous 

term for individual stock and the market because this method guarantees that any jump 

component is not included in the estimation process.  

Now, we turn to the estimation of jump beta. The actually observed high-frequency 

returns, of course, contain both diffusive and jump risk components. However, by raising 

the high-frequency returns to powers of orders greater than two the diffusion 

components become negligible, so that the systematic jump dominates asymptotically 

for  𝑀 → ∞ . 9  As formally shown in Todorov and Bollerslev (2010), the following 

estimator is consistent for jump beta when there is at least one significant jump in the 

market portfolio for the given estimation window for 𝑀 → ∞. 

�̂�𝑖,𝑡
𝑗

= sign {∑sign{𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠}|𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠|
𝜏

𝑀

𝑠=1

} × (
|∑ sign{𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠}|𝑟𝑖,𝑡,𝑗  𝑟𝑚,𝑡,𝑠|

𝜏𝑀
𝑠=1 |

∑  (𝑟𝑚,𝑡,𝑠)
2𝜏𝑀

𝑠=1

)

1

𝜏

, (10)  

Here, the power 𝜏 is restricted to be ≥ 2 so that the diffusion price movements do not 

matter asymptotically. The sign in Eq. (10) is taken to recover the signs of jump betas that 

are eliminated when taking absolute values. The estimation in Eq. (10) converges to �̂�𝑖,𝑡
𝑗

 

when there is at least one systematic jump (in the market portfolio) on [0, T]. Therefore, 

in order to calculate �̂�𝑖,𝑡
𝑗

, we first need to test for the existence of jumps on the log-price 

series 𝑝𝑡of the market portfolio. The jump beta �̂�𝑖,𝑡
𝑗

 in Eq. (10) has a similar interpretation 

to the market beta in the CAPM model. It allow us to assess sensitivity of an (or a portfolio 

of assets) to extreme market fluctuations. Lower jump beta would signify a resistance of 

an asset to mode as much as a market during extreme event (jump defensive assets), 

                                                           
9 The basic idea of relying on higher orders powers of returns to isolate the jump component of the price 
has previously been used in many other situations, both parametrically and nonparametrically; see e.g., 
Barndorff-Nielsen and Shephard (2003). 
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whereas higher jump beta values represent high sensitivity of an asset exacerbating the 

effect of the market moves during the extreme event (jump cyclical assets). 

Following Todorov and Bollerslev (2010) and Alexeev et al. (2017) we set the parameter 

values for 𝜃,  𝜛, and 𝛼  estimate the �̂�𝑖,𝑡
𝑐   and �̂�𝑖,𝑡

𝑗
  on both monthly and daily basis. For 

estimating the �̂�𝑖,𝑡
𝑐  and �̂�𝑖,𝑡

𝑗
, the truncation threshold, 𝜃 = 𝛼∆𝑛

𝜛, uses 𝜛 = 0.49 and 𝛼 ≥ 0, 

suggesting that the threshold values may vary across stocks and across different 

estimation window. The threshold for the diffusion price movement, 𝜃 = 𝛼𝑖
𝑐 = 3√𝐵𝑉𝑖

[0,𝑇] 

for �̂�𝑖,𝑡
𝑐  suggesting that the diffusion components discards only three standard deviation 

away from mean, and thus unlikely to be associated with diffusion price movements, 

where, 𝐵𝑉𝑖
[0,𝑇] is the bi-power variation of the i-th stock at time [0, 𝑇]; the value of 𝜏 = 2 

for equation (10).  

As shown in Eq. (9) and Eq. (10), these decomposed betas use only a portion of the 

observations that are mutually exclusive. We also consider the aggregated beta of theses 

decomposed betas to be the standard CAPM beta, which represent the overall sensitivity 

of an individual stock to the market. The estimator of the standard beta employs all 

available observations. Accordingly, we calculate the standard beta for an individual 

stock using the Eq. (7) in the spirit of Andersen et al. (2006)‘s realized beta. It is important 

to note that Eq. (7) still defines the Standard Beta in a one-factor CAPM model. In the 

following, we refer to each of these three different beta estimates for stock i without the 

explicit time subscript as �̂�𝑖
𝑐, �̂�𝑖

𝑗
 and �̂�𝑖

𝑠 for short. 

2.4. Jump detection methodology 

We apply the nonparametric jump-detection test proposed by Barndorff-Nielsen and 

Shephard (2006) to detect jumps in the market portfolio.10 BNS propose two general 

                                                           
10 The BNS jump statistic is the main focus of study here for several reasons. First, we focus on studying the 
large and rare jumps since they are inherently more informative and are the major jump risks investors 
would face in financial markets. Second, among the competing jump measures, it is widely regarded as the 
most prominent. For example, Bollerslev et al. (2008), say, “. . . it is by far the most developed and widely 
applied of the different methods” (239). Third, Pukthuanthong and Roll (2015), find the BNS test has good 
size and power that compares favorably with other methods. Fourth, if the jump magnitudes are small, the 
separation of jumps from continuous co-movements and estimation of parameters becomes less precise 

(_ENREF_73) 
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measures based on realized power variations to test for jumps and to estimate the 

contribution of jumps to total variation- realized volatility (RV) and bi-power variation 

(BV). Realized, or historical, volatility of a sequence of prices 𝑝𝑡 can be derived from the 

returns. The realized variance (RV) is defined as the sum of squared intraday-returns, 

𝑅𝑉𝑡 =∑𝑟𝑡,𝑠
2

𝑀

𝑗=1

, 𝑡 = 1,… . , 𝑇                                                                                                      (11) 

Where M is the sample length for jump detection (often daily). Note that equation (11) 

uses only returns from within each trading day (intraday returns), discarding any 

overnight returns (intraday-returns). As a result, any jumps resulted from overnight 

returns are excluded from realized variance. Using the theory of quadratic variation, the 

realized volatility will generally converge uniformly in probability to the quadratic 

variation as the sample frequency, 𝑀, of the underlying returns approaches infinity. That 

is realized volatility estimator includes the contributions of the continuous sample path 

variation in the form integrated volatility plus the jumps. We can re-write this as: 

𝑅𝑉𝑡
𝑝
→ ∫ 𝜎𝑠

2
𝑡

0

𝑑𝑠
⏟    
𝑐𝑜𝑛𝑡𝑡𝑖𝑛𝑢𝑜𝑢𝑠

+∫ 𝑘𝑠
2

𝑡

0

𝑑𝑠  
⏟      
𝑗𝑢𝑚𝑝

   𝑡 = 1,… . , 𝑇                                                                             (12) 

Here ∫ 𝜎𝑠
2𝑡

0
𝑑𝑠 is the integrated variance, and ∑ 𝑘𝑠

2𝑞𝑡
𝑆 =𝑞0

 is the quadratic variation of the 

jump part over the period from 0 to 𝑡 (often a day). Jump tests are therefore designed to 

estimate jump component using high-frequency data.  

Bipower variation (BV) is given by 

𝐵𝑉𝑡 = 𝜇1
−2∑|𝑟𝑡,𝑠||𝑟𝑡,𝑠−1|

𝑀

𝑗=2

,     𝑡 = 1,… . , 𝑇                                                                                     (13) 

where 𝜇1 = √2/𝜋 .  BV consistently estimates the integrated variance (i.e. jump free) 

when the sampling frequency goes to infinity. Intuitively, in the presence of any jump, one 

of the two consecutive returns is bound to be larger. The product of the smaller return 

and the larger returns, however, will be small and thus neutralize the effect of the jumps.  

Therefore, 

𝐵𝑉𝑡
𝑝
→∫ 𝜎𝑠

2
𝑡

0

𝑑𝑠, 𝑓𝑜𝑟 𝑀 → ∞                                                                                                     (14) 
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Consequently the jump contribution to total variation is estimated from a combination of 

equations (13) and(14), for 𝑀 → ∞ 

𝑅𝑉𝑡 − 𝐵𝑉𝑡 → ∑ 𝑘𝑠
2

𝑞𝑡

𝑆 =𝑞0

,     𝑡 = 1,… . , 𝑇                                                                                             (15) 

Therefore, the difference between the 𝑅𝑉𝑡  and 𝐵𝑉𝑡  consistently estimates the jump 

contribution to the total variation. The 𝐽𝑡  measure in theory restricted to be non-negative 

(asymptotically). However, in practice for finite value of  𝑀,𝐵𝑉𝑡 may exceed 𝑅𝑉𝑡 so that 

𝐽𝑡  become negative. For detecting jump, we adopted the jump ratio test, proposed in 

Huang and Tauchen (2005) and Tauchen and Zhou (2011) where the test statistic: 

𝑅𝐽𝑡 ≡
𝑅𝑉𝑡 − 𝐵𝑉𝑡
𝑅𝑉𝑡

,                                                                                                                                 (16) 

which converges to a standard normal distribution when scaled by its asymptotic 

variance in the absence of jumps. That is  

𝑍𝐽𝑡 =
𝑅𝐽𝑡

√[(
𝜋

2
)
2

+ 𝜋 − 5]
1

𝑀
max (1,

𝐷𝑉𝑡

𝐵𝑉𝑡
2)

𝑑
→  𝑁(0,1)                                                                      (17) 

where 𝐷𝑉𝑡  is the quad-power variation robust to jumps. The quad-power varaition is 

defined as 

𝐷𝑉𝑡 ≡ 𝑀𝜇1
−4 (

𝑀

𝑀 − 3
)∑|𝑟𝑡,𝑠−3||𝑟𝑡,𝑠−2||𝑟𝑡,𝑠−1||𝑟𝑡,𝑠|,

𝑀

𝑗=4

   𝑡 = 1,… . , 𝑇                                        (18) 

The 𝑍𝐽𝑡  statistic in equation (17) can be applied to test the null hypothesis that there is 

no jump in the return process on a trading day, t. Huang and Tauchen (2005) show that 

this test has very good size and power and is quite accurate for detecting jumps. 

Significant jumps are identified by the realizations of 𝑍𝐽𝑡  in excess of the 99.9% critical 

value ∅𝛼. 11 

𝐽𝑡,𝛼 = 𝐼[𝑍𝐽𝑡 > ∅𝛼]. [𝑅𝑉𝑡 − 𝐵𝑉𝑡]                                                                                                     (19𝑎) 

where 𝐼 refers to the indicator function equal to one if a jump occurs and zero otherwise 

and the continuous sample path variation 𝐶𝑡 is given as  

                                                           
11 In the process of actual operation, we need to choose an appropriate 𝛼, and Tauchen and Zhou (2011) 
propose that when jump contributions are 10% and 80%, the significance level should be 0.99 and 0.999, 
respectively. 
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𝐶𝑡 = [𝑅𝑉𝑡 − 𝐽𝑡]                                                                                                                                  (19𝑏) 

A simple procedure is relied upon to deduce the sign of significant jumps. We assume that 

there is at most one jump per day and, further assuming that the jump is predominant 

absolute return of days when there is a significant jump (see (Andersen et al. 2010; 

Tauchen and Zhou 2011)). 12 The sign for significant jump can be defined as 

√𝐽𝑠𝑖𝑔𝑛,𝑡 = 𝐼(𝑚𝑎𝑥|𝑟(𝑡, 𝑗 = 1, … ,𝑚)|)√𝐽𝑡                                                                                        (20) 

Where the sing indicator 𝐼(. ) is equal to 1 or -1 depending on the sign of the argument. 

The magnitude of the jump in Eq. (20) is in standard deviation form. Intuitively, the sign 

in Eq. (20) depends on the largest (in absolute sense) intraday return conditioned on the 

existence of significant jump, i.e., 𝐼(𝑡).  

Once the realized jump size is filters out, we can estimate the jump mean 𝜇𝐽  , the 

variance 𝜎𝐽 and intensity  𝜆𝐽 as follows 

𝜇𝐽 =  Mean of 𝐽𝑡  

𝜎𝐽 =  Standard deviation of  𝐽𝑡   

𝜆𝐽 = Number of Realized jump Days /Number of Total Trading Days  

Tauchen and Zhou (2011) show that, under empirically realistic settings, this estimation 

method of realized jump parameters is robust with respect to drift and diffusion function 

specifications. It makes easy to specify the jump arrival rate, avoiding elaborate 

estimation methods, and yields reliable results under various settings, for instance, when 

the sample size is either finite, increasing or shrinking. 

3. Sample and Data 

The sample consists of high frequency stock price data for 50 of the 63 commercial banks 

traded on the Tokyo Stock Exchange (TSE) for the period January 2001 through 

December 2012, a total of 3053 trading days (There were 13 banks where the data were 

not available). The sample period allows us to investigate the transmission of shock in 

                                                           
12 The assumption of one jump per day fits to the compound Poisson jump process (Merton (1976)) also 
utilizes the Poisson jump process to describe rare and large return jumps which are presumably the 
responses to the arrivals of important news), and it should be pointed out that bipower variation also works 
for the infinite activity jumps despite the fact that we focus only on the case of rare and large jumps.  Further, 
Bollerslev et al. (2015) consider that by their very nature, systematic jumps are relatively rare, and as such 
it is not feasible to identify different jump betas for different jump sizes, let alone identify the small jumps 
in the first place. This assumption also maps directly into the way in which we empirically estimate jump 
betas for each of the individual stocks based solely on the large- size jumps. 
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Japanese market in periods of calm and crisis (subprime and global financial crisis).The 

list of banks in the sample is provided in Table 1. Data are extracted from the Thompson 

Reuters Tick history (TRTH) database available via SIRCA. We use the Nikkei 225 index 

as a proxy for the market portfolio.13  

The stock prices are sampled at a five minute frequency, as is standard in a large part of 

the high frequency literature. The choice of 5-minute sampling frequency reflects a trade-

off between using all available data and avoiding the impact of market microstructure 

effects, such as infrequent or nonsynchronous trading; the issue of optimal sampling 

frequency choice is an ongoing research agenda, see for example Zhang (2011). Unlike the 

more commonly investigated US and European markets, daily trading on the TSE is 

interrupted by a lunch break, trading between 09:00 am - 11:00 am and 12:30 pm- 3:00 

pm local time. We sample prices from 9:05 am-11:00 pm and 12.35 pm-3.00 pm, with 

overnight and over-lunch returns excluded from the data set.14 Missing data at 5-minute 

intervals are filled with the previous price creating a zero return. Hansen and Lunde 

(2006) show that this previous tick method is a sensible way to sample prices in calendar 

time. These restrictions result in a final sample of 2866 active trading days (in 144 

months), each consisting of 53 intraday day 5 min-returns for a total of 1, 61,809 

observations. 

Table 2 presents the market capitalization and turnover ratio on TSE over the sample. 

Market capitalization was rising steadily prior to the global financial crisis of 2008-2009 

and the European debt crisis period, from April 2010 until the end of the sample market 

capitalization rose. By 2012 it was at a level similar to that at the beginning of the sample. 

The turnover ratio peaked in 2007, and has since declined. 

4. Empirical results 

In this section, we present the empirical results. In section 4.1, we start by examining 

large discontinuous changes, known as jumps, in Japanese bank stock prices. In section 

4.2 and 4.3, we then examine empirically how individual stock prices respond to 

                                                           
13The Nikkei is a price-weighted index, consisting of 225 stocks in the first section of the TSE selected 
subject to certain industry-balance considerations. It represents the 50 % of the total market capitalization 
of the TSE. 
14 We are only concerned with the active trading period, and overnight information is beyond the scope of 
this study. 
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continuous, jump market moves in the context of single-factor model, and relate their 

variation to firm characteristics and economic conditions. Finally, in section 4.4, we 

examine how different systematic betas explain the stock returns. 

4.1. Evidence on Asset-price Jumps 

Empirical evidence suggests that asset prices display infrequent large movements that 

are too big to be Gaussian shocks. In Figure 1, we plot the time series of intraday returns 

on the Nikkei 225 index for the period 2001-2012. Occasional large spikes in the series 

suggest the presence of large moves (jumps). Consistent with this evidence, the kurtosis 

of market returns is 27, relative to 3 for normal distribution, as shown in the Table 1. 

Figure 2 shows the sample measures of daily-realized volatility, bi-power variation and 

jumps for the Japanese stock index. Market volatility was particularly high during the 

second half of 2008, associated with the disruptions to global markets around the period 

of the failure of Lehman Brothers, the rescue of AIG and other financial institutions. The 

plots reveal interesting volatility clustering and time variation of jump size along the 

sample period. The bottom panel of Figure 2 shows that, many of the largest realized 

volatilities are directly associated with jumps in the underlying price process.  

Using the Barndorff-Neilsen and Shepard test we find a total number of 272 jump days in 

the Nikkei index in the sample period. The proportion of jump days of the total is 9.4%, 

consistent with the proportions reported for other developed markets, including for the 

S&P500, 8.54% jump days in Todorov and Bollerslev (2010) from 2001 to 2005 and 3.5% 

jump days in. Alexeev et al. (2017) for  2003 and 2011. Of the 144 months in our sample, 

115 contain at least one jump day. The results suggest that the frequencies of jump 

occurrence in Japanese equity market are slightly higher than the US market. 

Table 3 reports the summary statistics for daily volatilities and jumps for the Nikkei 225 

stock index. The mean realized volatility is (√𝑅𝑉)  is 0.27%, while average bi-power 

variation (√𝐵𝑉)  is 0.24%. The average absolute jump size (√𝐽)  is 0.09%. The 

unconditional distribution of both volatility measures and jumps (𝐽𝑡), are highly skewed 

and leptokurtic, with the relative jump measure, 𝐽𝑡 , clearly indicating a more positive 

skewness and a higher degree of leptokurtosis than the daily realized volatilities, and 

suggesting that they occur on a small number of occasions with large impact on the 

Japanese index return.  
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From Table 3, we observe that, for the equity index, approximately 85% (BVt/RVt) is due 

to continuous components of returns and the jump contribute 14% ((Jt/RVt) of realized 

variation. Andersen et al. (2007) find a similar jump contribution to RV for the S&P 500 

index. 

Table 4 provides an annual picture of the identified jump days for the period January 

2001- December 2012.15 The number of jumps ranges from 10 to 39 in the Japanese 

market. The prevalence of jumps decreases during the period of most global financial 

stress in 2007 and 2008, consistent with Chatrath et al. (2014) who show that jump 

frequency does not increase in periods of stress. Overall, the results show that the 

numbers of jumps does not vary a great deal across the sample period – in most years the 

majority of months contain jumps. A plausible explanation for our findings is that 

investors may under-react to news about shocks as they already revising their 

expectations of the aggregate economy using the information from the economy. Patton 

and Verardo (2012) propose a simple learning model in which investors use information 

on firm announcements to revise their expectations about other firms and the entire 

economy. Another possible explanation is that during the crisis period the threshold of 

jump identification increases with the overall market volatility.  Therefore, some large 

price discontinuities, generally classified as jumps during the calm period, may be 

classified as continuous movements during the crisis period.  

Concerning the jump measures, we further split the resulting time series jump into 

positive and negative parts that will be denoted as positive jumps and negative jumps, 

respectively. This separation is important from a practical perspective. Practically, 

investors are mostly concerned about negative jumps. The ability to disentangle the 

negative jumps provides us with an important tool for risk management. From Panel A of 

Table 4, we observe that Japanese’s capital market comprises a slightly higher number of 

positive than negative jumps but the disparity is not statistically significant. The 

asymmetry is in contrast with Lahaye et al. (2011), who find equity market tend to show 

more negative jumps. Perhaps our findings suggest that bank stocks in Japan are more 

like to move together with the market under rising conditions than falling conditions. The 

jump intensities, which represent the number of jumps per unit of time16, characterize 

                                                           
15 See footnote 1. 
16 In our case these values are the number jumps per year 
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the jump activity. For both the positive and negative jumps, the jump intensity is not 

substantially different. We extend the analysis of the jump characteristics of this market 

through examining the distribution of the jump variation in Panel B of Table 4. Panel B of 

Table 4 displays the summary statistics for mean jump size as well as exhibits statistical 

characteristics of positive and negative jumps. The conditional mean on jump size, is 0. 

003% over the entire sample period, which indicates that the average value of the 

negative jump sizes is greater than that of the positive jump sizes. The positive and 

negative parts have approximately the same magnitude (means are close in absolute 

values), as well as similar standard deviations over the entire sample period. We also 

observe that the average jump size is much higher for post-crisis period compared to the 

crisis period. Interestingly, during the post- crisis period the mean jump size is negative, 

indicating that the average value of positive jump sizes is smaller than that of negative 

jump size. This findings suggest that the importance of jumps has increased after the 

crisis period. Further, comparing positive and negative jumps, we find an asymmetry 

between the positive and negative parts of the jump. For instance, the mean (in absolute 

value terms) and volatility of the positive jump sizes in the three sub-sample period are 

approximately similar, while the mean and volatility of the negative jump sizes display 

large variability in the three sub-sample period. During the crisis period, the intensity and 

the jump size of negative jumps are at least twice as high as those obtained for the post-

crisis period; and are significantly larger compared to pre-crisis period, a result as we 

would expect that the largest magnitude should be observed for the negative jumps. In 

contrast, crisis negative jumps are less frequent but of larger size compared to the post-

crisis period. See, panel A of Table 4. 

Motivated from these identified jump days (with their corresponding jump months) we 

now estimate monthly continuous systematic risk (diffusion beta) and jump systematic 

risk (jump beta) for the sample period. Particularly, we estimate the diffusion and 

discontinuous betas of 50 listed Japanese banks on a daily and month basis using the 

Todorov and Bollerslev approach. We then investigate the relationship between different 

betas and other firm characteristics. 

4.2. Decomposing Systematic Risk into Diffusion and Jump Components 

The subsection presents the results of beta estimation that follows the approach defined 

in Eq. (8) and Eq. (10). We undertake our analysis on the estimates of diffusion and jump 
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betas at monthly, and not daily, frequencies as both Todorov and Bollerslev (2010) and 

Alexeev et al. (2017) show that daily betas do not provide analytically tractable results. 

17 Estimates of diffusion and jump betas are computed on a month-by-month basis. High 

frequency 5 minute data permits the use of 1-month non overlapping windows to 

analyses the dynamics of our systematic risk estimates. Table 5 reports the average 

monthly diffusion and jump beta estimates for each of the 50 banks in the sample along 

with their respective 95% confidence intervals. The jump betas exceed the diffusion beta 

for every institution. Using the corresponding 95% confidence intervals in Table 5, we 

find no evidence of overlapping interval between the jump betas, �̂�𝑖
𝑗
 and diffusion betas, 

�̂�𝑖
𝑐 for any stock. The highest betas are observed for Sumito Mitusui Financial Group, with 

a diffusion beta, �̂�𝑖
𝑐 of 0.88, and jump beta �̂�𝑖

𝑗
 of 1.50. The lowest diffusion beta, �̂�𝑖

𝑐 is 0.01 

for the Nanto Bank, �̂�𝑖
𝑗
 is 0.46 for the Yachiyo bank.  The diffusion betas, are below unity 

for all Japanese banks during the sample period except for the Sumito Mitusui Financial 

Group, which has a beta very close to the market beta. This implies that stock returns of 

Japanese banks associated with continuous market movement respond less to aggregate 

market. 18  

The resulting values jump betas, �̂�𝑖
𝑗
 are higher than the diffusion betas,  �̂�𝑖

𝑐 , consistent 

with the small existing literature for firms in the US in Alexeev et al. (2017), Bollerslev et 

al. (2015), Todorov and Bollerslev (2010). The results for the Japanese banks are also 

similar to those for the Indian banks recorded in Sayeed et al. (2017) in that the average 

diffusion beta is generally smaller than one, which implies that in response to the 

diffusive market movements, the returns of banking stocks move less than the market 

return for the wider variety of stocks contained in the CNX500 index, but the diffusion 

                                                           
17 We also estimated the daily betas and the daily betas estimates are obviously somewhat noisy and 
difficult to interpret. Meanwhile, the estimated monthly betas appear much more stable, while still showing 
interesting and clearly discernable pattern over time.  Therefore, we concentrate on monthly betas. 
18 The issue still remains as to why the average diffusion beta values are on the whole much lower than was 
expected in finance theory. One of the possible reasons is that these stocks might not have sufficient trading 
volume to respond sufficiently to changes in the market. If high proportions of these stocks are held by 
parties such as government, institutions or other companies who are not trading actively, the returns of 
these companies may not be as sensitive to shocks in the market, and therefore have a lower beta value. 
Alternatively, the lower beta values may be the result of the market becoming more volatile over time. Over 
the past decades, there have been increasing numbers of IT and telecommunications listing on the Japanese 
stock market. These companies’ stocks are considered as highly volatile stocks. As such, the banking 
industry may have become relatively less volatile due to the presence of these highly volatile stocks. Since 
the beta values measures the relative volatility in stock returns between individual companies and the 
market, the beta values for these stocks may indeed have fallen.   
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beta for Japanese banks indicates considerably more defensive capacity than evident in 

the Indian banks. This result supports the notion that the returns on individual stocks are 

most strongly correlated with market returns on days when the market experiences a 

jump (as jumps are associated with news arrival). Across individual stocks, 40% of the 

banks have jump betas higher than the market beta.  

Figure 3 plots the cross-sectional average of the betas estimated for the standard single 

factor CAPM model, and the diffusion, and jump betas. It is immediately apparent from 

Figure 3 that in every case where jumps are present, the Japanese banks have a jump beta 

which exceeds the diffusion beta estimated for that month, on average by 0.75. The 

sample contains two periods of readily identifiable stress - the first in the third quarter 

of 2008 associated with the bankruptcy of Lehman Brothers, and the second in the first 

half of 2010 associated with the Greek debt crisis - and in both of these periods the gap 

between the diffusion and jump betas reduces. That is, there is more attention paid to 

volatility risk (the diffusion component of the systematic risk) in the market than jump 

risk caused by news. This can be partly explained by the high market volatility during the 

crisis periods. During times of high market stress, the overall market environment 

becomes relatively more important than unexpected news shocks to the system. The 

reaction to frequent unexpected news during stressed market times may be a feature of 

the overall market conditions. The results for the Japanese banks are similar to those for 

the US financial sector stocks recorded in Gajurel (2015) in that there is a consistently 

positive gap between the jump and diffusion betas for these stocks, but the diffusion beta 

for Japanese banks indicates considerably more defensive capacity than evident in the US 

financial sector. Overall, the plot demonstrates that the diffusion beta is generally lower 

than the standard CAPM estimate, but that the jump beta can sometimes be considerable 

higher.  

Jump betas which are higher than continuous betas provide information about the speed 

of information absorption in the market. Patton and Verardo (2012) posit that 

information arrival in individual stocks may result in a temporarily statistically 

significantly higher beta during the time of news arrival as this information is disbursed 

to the rest of the market. Although they use an event study to demonstrate this in US 

stocks over time around company earnings events, it is well known that financial asset 

prices jump in response to news; see for example Dungey et al. (2009), Lahaye et al. 

(2011). The beta decomposition provided by the Todorov and Bollerslev (2010) method 
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is another means of separating the way in which markets react to information. In the case 

of the Japanese banks, the information associated with the normal process of continuous 

updating (the diffusion beta) is absorbed at a slower rate than the market, perhaps 

reflecting the role of the banks in driving credit for other sectors. However, unexpected 

news, which promotes a price jump, is absorbed faster as evidenced by the increased 

jump beta. However, compared with estimates of Patton and Verardo (2012) for US 

S&P500 stocks the banks are not providing a strong mechanism to disseminate 

information to the rest of the economy; the jump beta estimates rarely exceed 2 as they 

do in the US analysis (which is not restricted to financial firms). The difference in the 

estimated diffusion and jump betas estimated leads us to consider the importance of 

segregating these results for portfolio diversification. 

4.2. Firm Characteristics 

Firm characteristics usually have strong impact on firm’s sensitivity to systematic risk. 

For example, we would expect that larger firms are less vulnerable to market risks, and 

hence have lower beta. To explore the roles of firm characteristics in understanding the 

estimates of diffusion and jump betas, we conduct regression analysis in using form’s size, 

profitability, leverage, and capital ratio.  

Influential variables from the existing literature include leverage, which has a positive 

relationship with beta, for example Mandelker and Rhee (1984), with Buiter and Rahbeir 

(2012) specifically signaling the potential systemic risk of high leverage in the banking 

sector. Hong and Sarkar (2007) also find that beta is an increasing function of leverage. 

The effect of size on bank systematic risk is debated. While Demsetz and Strahan (1997) 

find that large banks tend to diversify their business more efficiently and are less prone 

to bankruptcy, Saunders et al. (1990) and Haq and Heaney (2012) find that bank 

systematic risk increases with bank size as large banks could be more sensitive to general 

market movements than small banks.  

By maintaining a capital buffer to absorb losses that may arise from unexpected shocks 

higher capital ratios are expected to decrease bank beta; representing higher bank 

solvency and lower perceived risk,(Keeley and Furlong 1990). Prior empirical studies 

also provide evidence of an inverse relationship between profitability and systematic risk. 

Other work, Borde et al. (1994), finds a positive relationship between return on assets 
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and beta during the period, 1988-1991, for US insurance companies, indicating that 

finance industries with higher profitability are exposed to greater systematic risk 

because they are more profitable when taking more credit risks in business.  

Based on the above discussion, we anticipate the following relationships between beta 

and these five explanatory variables; that beta increases with leverage, increases with 

bank size and with profitability, but decreases with higher capital ratios. We now proceed 

to investigate these relationships for both jump and continuous systematic risk using the 

following regression framework. 

𝛽𝑖,𝑡 = 𝛼0 +∑𝛾𝑋𝑖,𝑡

𝑚

𝑖=1

+ ∑ 𝜃𝑖(𝑡𝑖𝑚𝑒 𝑑𝑢𝑚𝑚𝑖𝑒𝑠)𝑡

2002−2012

𝑡=1

+ 𝜇𝑖,𝑡                                                                 (21) 

where 𝛽𝑖,𝑡  = either diffusion beta (�̂�𝑖,𝑡
𝑐 )  or jump beta (�̂�𝑖,𝑡

𝑗
)   for bank 𝑖,  at period  𝑡 ; 𝑋𝑖,𝑡 

represents the firm characteristics variables -- firm size, profitability, debt leverage, and 

capital ratio -- and µ𝑖,𝑡  is the model residual. We also include time dummies to control for 

macro-level shocks and unobserved time heterogeneity. The monthly firm characteristics 

data come from Thompsons DataStream. Following previous studies, we measure firm 

size by the market value of equity. Profitability is computed as earnings before interest, 

taxes, depreciation, and amortization over Total assets. Leverage is the ratio of total debt 

to total assets. The capital ratio is measured as book value of equity divided by total assets.  

The descriptive statistics for bank characteristics variables are presented in Table 5.  

Panel B of Table 5 reports the correlation matrix amongst all variables including the 

standard one factor, jump and diffusion beta estimates. The three betas are positively and 

highly correlated with each other (with values ranging from 0.67 to 0.80) as evident in 

Figure 3.19  In terms of firm characteristics variables, diffusion beta, and jump beta are 

positively correlated to size, leverage and profitability. Multicollinearity amongst the firm 

characteristics variables is limited to 0.38, between leverage and firm size.20 

Table 7 reports the results from the regression analysis. The first three columns of results 

consider the role firm characteristics in the behavior of the diffusion beta and the final 

                                                           
19 To ease our analysis, we exclude month for which we do not find a significant jump in the market. 
20  As a rule of thumb, multicollinearity is likely to exist when the independent variables are highly 

correlated, i.e., r = 0.80 and above (Gujarati and Porter 2009) . 
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three columns for the jump beta. The first two columns explore subsets of the explanatory 

variables, with leverage included (excluded) in column 1(2) and the capital ratio excluded 

(included). It is clear from a comparison of columns 1-3 that in the continuous case when 

both leverage and capital ratio are included neither have a significant effect, but when 

they are included individually they do so. This is not the case for the jump betas. 

The preferred results of column (3) in each case reveal that diffusion beta is positively 

affected by both firm size and profitability, as anticipated. The effects of leverage (positive) 

and bank capital (negative) are insignificant but the signs are also consistent with those 

expected. Jump beta is also affected by firm size and profitability, but with an additionally 

a significant positive effect from leverage, while the capital ratio is insignificant. 

The results support that larger Japanese banks are more sensitive to market movements 

than smaller institutions, regardless of whether they occur through a jump or not. 

However, the effect of size is larger for the jump beta than diffusion beta, implying that 

large banks react more to information transmitted by abrupt changes even more than 

they do to continuous changes. The result is consistent with previous studies particularly 

for US bank holding companies and European banks (Saunders et al. 1990; Haq and 

Heaney 2012).  

Profitable banks are more sensitive to both continuous and jump systematic risk than 

their less profitable counterparts, supporting the hypothesized positive risk-return 

relationship. A decrease of one percentage point in the profitability ration is estimated to 

lead to decrease of 0.002 in the diffusion beta, assessed at the mean value of profitability, 

this is equivalent to a decrease in the profitability ratios for Japanese banks from 12% to 

11% resulting in a decrease in diffusion beta of 0.002. It immediately apparent that a 

large change in profitability would be required to alter beta to economically meaningful 

extent. However, in this case the impact of continuous movements is slightly more 

impactful than jump movement; that is the effect for profitable banks is not importantly 

different if the information arrival through price arrives abruptly or continuously. A 

possible reason is that profitable banks often employ aggressive business strategies and 

consequently exhibit higher risk. Borde et al. (1994) reach the same conclusion for US 

insurance companies.  

While leverage is not statistically significant in determining diffusion beta, it has a 

positive effect on jump beta. The results reveal that financial firms with higher leverage 
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(debt capital) are more responsive to jumps in the market. As higher leverage ratios make 

financial firms riskier, these highly leveraged firms are more sensitive to market jumps. 

Information arrival through abrupt price movements may cause banks to adjust their 

business behavior, whereas planning should have eliminated this channel in relation to 

the known continuous price process. 

To gain some sense of the economic relevance of these results we calculate that an 

increase in bank size by 1 percentage point (assessed at the mean) is associated with a 

0.32 percentage point increase in continuous beta and 0.42 percentage point increase in 

jump beta. An increase in profitability and leverage by 1 percentage point would increase 

bank continuous systematic risk by a mere 0.001 point and 0.008 point respectively, 

while the jump beta effects are for increases by 0.001 point and 0.034 point respectively. 

Bank size is clearly the largest economic effect in our firm characteristic set. 

The recent global financial crisis (GFC) is an exogenous shock to a firm’s investment 

choices and thus it provides an opportunity to understand the relative importance of 

these determinates of bank systematic risk and jump risk and how these factor evolved 

with the changes in world economy during the crisis period. Yamori et al. (2013) suggest 

that Japanese experience with their economic collapse in the 1990s enhanced the ability 

of the financial system to respond; through programs implemented including deferrals 

for interest rate and principal payments and the extension of further loans. The 

government also introduced support measures which partly explain the willingness of 

banks to extend credit, applying guarantee measures which absorbed their risk of loss, 

and loosening capital adequacy requirements. Whilst the drop in business conditions 

reported from Tankan was severe, the contraction of credit conditions was much less so; 

see Yamori et al. (2013).  

Although  no major failures took place in the Japanese financial industry during the GFC 

period Miyakoshi et al. (2014) find evidence of the transmission of risk from the 

manufacturing industry to the financial industry, observing that the Japanese exporting 

industry, including the Toyota, Honda, and Nissan motor vehicle companies, suffered 

extraordinary deficits in the two fiscal years following the crisis. To characterize the betas 



28 
 

and to aid our discussion, we split the sample period into crisis (July 2007 to May 2009) 

and the non-crisis period.21  

The following model is used to explore the impact of the financial crisis on the 

relationship between different betas and its determinants: 

𝛽𝑖,𝑡 = 𝛼0 +∑𝛾𝑋𝑖,𝑡

𝑚

𝑖=1

+∑𝛾1

𝑚

𝑖=1

𝑋𝑖,𝑡 +∑𝛾2,𝑡𝐷𝑡

𝑚

𝑖=1

𝑋𝑖,𝑡 +∑𝜃𝑡 (𝑡𝑖𝑚𝑒 𝑑𝑢𝑚𝑚𝑖𝑒𝑠) + 𝜇𝑖,𝑡     (22) 

where we introduce a GFC dummy 𝐷𝑡= 1 for the crisis period July 2007- May 2009..  

Table 8 reports the results of the impact of the GFC on the relationship between the betas 

and firm characteristics. Focusing on column (3) for each of the beta regressions in Table 

8 shows that the effects of firm size, profitability and leverage reported in Table 7 are 

retained – continuous beta is positively related to firm size and profitability, and jump 

beta is positively related to firm size, profitability and leverage.  

In relation to how the GFC affects the association between different betas and bank 

characteristics variables, we observe some interesting results from multiplicative  

interaction terms. The estimated coefficients on Profitability*GFC is positive and 

statistically significant. This suggests that the impact of profitability on continuous beta 

increased during the GFC period.  

There are two important further results. For diffusion beta, there is a significant addition 

to the impact of profitability on beta during the crisis period. In the crisis period the 

impact of profitability is increased by almost 60 percent, more profitable firms reflected 

more of the market movements (or perhaps in the context of the environment, the market 

was strongly associated with the loss of profitability of the banking sector). The jump beta, 

however, does not show any change in its relationship with profitability between the non-

crisis and crisis periods. Rather, it has a dramatic increase (almost doubling) of the impact 

of leverage. During the crisis period being more leveraged resulted in a greater beta in 

response to abrupt price movements. There is also a statistically significant shift in the 

intercept term for the jump beta, supporting a more negative intercept during the crisis 

than non-crisis periods. 

                                                           
21 We use the crisis period identified in Dungey and Gajurel (2014).  
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The jump beta, however, does not show any change in its relationship with profitability 

between the non-crisis and crisis periods. Rather, it has a dramatic increase (almost 

doubling) of the impact of leverage. During the crisis period, being more leveraged 

resulted in a greater beta in response to abrupt price movements. There is also a 

statistically significant shift in the intercept term for the jump beta, supporting a more 

negative intercept during the crisis than non-crisis periods. Banks with larger debt 

obligations (relative to equity) are more sensitive to market fluctuations during financial 

distress. It is not surprising that banks with low debt are seen as attractive during volatile 

times and become safe havens for investors. 

Overall, the results show that the four firm characteristic variables significantly influence 

not only continuous systematic risk but also jump risk of banks.  

4.3. The Risk-Return Relationship 

Theoretically, Merton (1976) assumes stock jump risk is diversifiable, while papers such 

as Santa-Clara and Yan (2010) assume market jump risk is priced. We consider whether 

jump risks are priced cross-sectionally. The conventional CAPM implies that securities 

have the same expected returns if they have the same betas. The expected risk-return 

relationship of the jump-diffusion model is different. The jump-diffusion model has two 

different types of betas instead of one. One measures the systematic risk when no jump 

occurs, and the other measures the systematic risk when a jump occurs.  Different 

securities have different diffusion and jump beta risks. Hence, securities will have 

different expected returns even if they have the same diffusion betas.  

The conventional CAPM implies two-fund separation which claims that all investors hold 

the same portfolios, a market portfolio and a riskless asset. This is no longer true in the 

jump-diffusion model because investors may have different preferences to diffusion and 

jump betas. It would be difficult, if not impossible, to find a portfolio that is optimally 

invested and which has the same premium for both the diffusion and jump risks of its 

component securities.  

The importance of these risks is now a fundamental premise of the option pricing 

literature and those studies have argued that the risk premia associated with jump risks 

are different from the premia associated with diffusion risks (see, e.g., Pan (2002); 

Todorov (2009) and references therein). This motivates our test of whether the two types 



30 
 

of betas carry separate risk premia. It is especially important to determine the 

contribution of jumps to periods of market stress because jump risk, either in returns or 

in volatility, cannot typically be hedged away, and investors may demand a large premia 

to carry these risk; for instance, Pan (2002). We focus on the contemporaneous 

relationships between realized factor loadings and realized stock returns, as in Cremers 

et al. (2015); Ang et al. (2006), who themselves follow a long tradition in asset pricing in 

considering the contemporaneous relation between realized factor loadings and realized 

stock returns (e.g., Fama and MacBeth (1973); Fama and French (1993); Lewellen and 

Nagel (2006); among others). A contemporaneous relation between factor loadings and 

risk premiums is the foundation of a cross-sectional risk-return relation.   

The test assets we use in our pricing regressions are individual stocks rather than 

portfolios. Ang et al. (2010) show that constructing portfolios ignores important 

information (especially, as stocks within particular portfolios having different betas) and 

leads to larger standard errors in cross-sectional data.  In our empirical analysis, we 

choose panel regression with both period and cross section fixed effects over the 

conventional Fama and MacBeth (1973) cross-sectional regressions. Although Fama and 

Macbeth (FM) regression is a standard methodology to validate an asset pricing model, 

Petersen (2009) and Pasquariello (1999) indicate that FM two step procedures do not 

properly explain estimation errors and lack independence between cross-sectional 

errors. Therefore, we focus on individual stocks rather than portfolios, estimating panel 

regressions using all stocks in our sample as follows: 

�̅�𝑖,𝑡 = 𝛼0 + 𝛾𝑐𝛽𝑖,𝑡
�̂� + 𝛾𝑗𝛽𝑖,𝑡

�̂�
+ ∅𝑆𝐼𝑍𝐸𝑖,𝑡 + 𝜃𝐵𝑀𝑖,𝑡 + 𝜀𝑖,𝑡                                                               (23) 

where �̅�𝑖,𝑡  is the realized excess return on stock 𝑖  the 𝑡-th month. We use the average 

monthly return as a proxy for realized excess returns, as there are no risk-free rates in 

Japan comparable to U.S. Treasury bill rates. 22  𝛽𝑖,𝑡
𝑠  , 𝛽𝑖,𝑡 

𝑐 , 𝛽𝑖,𝑡
𝑗

 are the standard beta, the 

continuous beta, and the jump beta of firm 𝑖 at month 𝑡, from our estimates in section 4.2. 

For comparison, we also estimate similar regressions by replacing the two betas by the 

standard CAPM beta 𝛽𝑖,𝑡
𝑠 . Based on these panel regressions, with fixed effects in both the 

                                                           
22 Alexeev et al. (2017) also use the average monthly return as a proxy for realized excess returns in order 
to extract the risk premia. 
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cross-section (firms) and period (time) dimensions, we then estimate the risk premiums 

associated with the different betas and explanatory variables.  

Table 9 presents the unconditional regression results for the stock returns and each of 

the three betas ignoring the possible conditional beta/return relationship. The first three 

models show results for univariate regressions of returns on each beta. In model (4) of 

Table 9, we examine the effect of including both the continuous and jump beta estimates 

without considering the influence of size and BM effects.  Model (5) in Table 9 examine 

the effect of including both the diffusion  and jump beta estimates after controlling for 

size and BM effects.  

The parameter loadings on the standard beta, the diffusion beta, and the jump beta in 

models (1) to (3) of Table 9 are all positive and significant, consistent with CAPM theory. 

Model (4) in Table 9 shows that the diffusion beta becomes insignificant when controlling 

for jump beta. However, the effect of jump beta remains significant even after controlling 

the effect of diffusion beta. From Table 9, it can be observed that, even in combination 

with variable size and BM, the significant relationship between average returns and jump 

beta persists in all bivariate regressions. This implies that stocks with high sensitivities 

to jump risk can expect higher returns, that is, jump risks carry a positive market price 

for risk. 

4.3.1. Diffusion and Jump Risk in Up and Down Markets 

The unconditional results are consistent with existing asset pricing tests in a broad 

setting. However, since excess returns may behave differently in up and down markets, 

we now consider these different phases in the market risk-return model.  

Bollerslev et al. (2015) find that the risk premium associated with jump beta is 

statistically significant, while the diffusion beta does not appear to be priced in the cross-

section. The decompositions of  Todorov and Bollerslev (2010) and Bollerslev et al. (2015) 

do not make a distinction between upside market and downside market risk. The 

arguments based on asymmetric preferences by investors are, however, equally 

applicable in a context where we disentangle diffusion risk and jump risk. In particular, 

given the pricing results of  Bollerslev et al. (2015), it is unclear whether down market 

risk is priced higher than up market risk. In particular, we to test for the price diffusion 

risk and jump risk between different market states. We examine this for three reasons. 



32 
 

First, there is a problem when researchers test the CAPM empirically using ex-post 

realized returns rather than the ex-ante expected returns upon which the CAPM is based. 

All investors recognize on average (expected) market returns must be greater than the 

risk-free rates. However, there must be some cases where the risk-free return exceeds 

the market return, otherwise no rational investor would ever invest in risk-free assets. In 

this case, we observe a reverse relationship between market beta and returns. In addition, 

besides this conceptual argument, in an ex-post context, the CAPM claims that high beta 

portfolios have higher expected returns than low beta portfolios given their higher risk 

due to the higher probability of greater losses, implying there must be some non-zero 

probability that the realized return of the low beta security will be greater than that of 

the high beta security, otherwise no rational investor would hold a low beta portfolio. The 

CAPM thus requires that the realized market return will with non-zero probability be less 

than the risk-free rate, and the realized return for high beta portfolios will with non-zero 

probability be lower than low beta portfolios. Pettengill et al. (1995) infer that periods 

when the realized returns for high beta portfolios are less than low beta portfolios occur 

when the realized market return is less than the risk-free rate, implying a positive 

relationship between beta and returns when the excess market return is positive (up 

market), and a negative relationship when the excess market return is negative (down 

market). It is thus necessary to distinguish between up and down markets in the relation 

between beta and realized returns in order to take into account such a “realization bias”. 

If not, ignoring this conditional relation (to test for an unconditional positive relation 

between beta and realized returns) might be biased against finding a systematic relation, 

due to aggregation of positive and negative excess market return period. Second, 

information on the states of any asset market is relevant for investors. Investors who may 

follow a market timing strategy can obtain a long position under a bull (up) market and 

a neutral or short position under a bear (down) market. Investors that do not engage in 

market timing strategies may incorporate the different behavior of asset returns in their 

risk management  (Perez‐Quiros and Timmermann 2000). Third, up and down markets 

can affect asset pricing, as they are an important source of time variation in risk premia; 

see, for example, Ang et al. (2006). 
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To examine the relationship between beta and realized returns conditional on the sign of 

excess market return, testing is modified by including a dummy variable in the panel 

regression Eq. (23), thus allowing of positive and negative excess market returns to be 

separated following the methodology of  Pettengill et al. (1995) as follows: 

�̅�𝑖,𝑡 = 𝛼0 + 𝛾𝑐 𝑢𝑝 𝛿. 𝛽𝑖,𝑡
�̂� + 𝛾𝑐 𝑑𝑜𝑤𝑛 (1 − 𝛿). 𝛽𝑖,𝑡

�̂� + 𝛾𝑗𝑢𝑝𝛿. 𝛽𝑖,𝑡
�̂�
+ 𝛾𝑗𝑑𝑜𝑤𝑛(1 − 𝛿). 𝛽𝑖,𝑡

�̂�
 

+  ∑  

𝑚

𝑛=1

[∅𝑢𝑝 𝛿. 𝑋𝑖,𝑡 + ∅𝑑𝑜𝑤𝑛 (1 − 𝛿). 𝑋𝑖,𝑡] + 𝜀𝑖,𝑡                                              (24) 

where 𝛿 =1 if  𝑟𝑚𝑡 > 0  (an up market) and 𝛿 =0 if  𝑟𝑚𝑡 < 0 (a down market). In this study, 

we include diffusion beta, jump beta, standard beta as well two firm-specific explanatory 

variables: firm size (SIZE) and book-to-market ration (BM). Incorporating a dummy 

variable into the regression allows for the existence of a negative realized market risk 

premium. We expect 𝛼𝑖,𝑡 = 0 and 𝛾𝑐 𝑢𝑝 (𝛾𝑐 𝑑𝑜𝑤𝑛 ) to be positive (negative) and statistically 

significant, implying the significance of beta as a risk measure. Monthly estimates 𝛾𝑐 𝑢𝑝  

are averaged from (𝛾𝑐 𝑢𝑝 ̅̅ ̅̅ ̅̅ ) from which the following hypotheses are tested: 𝐻𝑜 : 𝛾𝑐 𝑢𝑝 ̅̅ ̅̅ ̅̅ = 0 

against the alternative 𝐻𝑜 : 𝛾𝑐 𝑢𝑝 ̅̅ ̅̅ ̅̅ > 0 , and  𝐻𝑜 : 𝛾𝑐 𝑑𝑜𝑤𝑛 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 against the alternative 𝐻𝑜 : 

𝛾𝑐 𝑑𝑜𝑤𝑛 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < 0 

Table 10 presents our baseline results. Model (1) in Table 10 shows a significant positive 

(negative) relationship between standard beta and return during up and (down) markets, 

consistent with Pettengill et al. (1995); Pettengill et al. (2002); Hodoshima et al. (2000); 

Hur et al. (2014). When we decompose the CAPM beta into a diffusion and jump betas in 

up and down markets as in models (2) to (4) we see that both the betas attract a 

significant premium at the 1% level respectively. The results also show that the jump beta 

carries the larger premia of the two in both up and down markets. The null hypothesis of 

no beta–return relations  (𝐻𝑜 : 𝛾𝑐 𝑢𝑝 = 0 and 𝐻𝑜 : 𝛾𝑐 𝑑𝑜𝑤𝑛 = 0) is clearly rejected. Using 

the results in Table 2.10 for our preferred model (5), a 2-standrad-deviation difference 

in jump beta during the whole sample period, for the 5-min sampling frequency will lead 

to a difference in expected return of 2*0.6404* 0.5%*12 = 7.68% and 2*0.6404* 0.6%*12 

= 9.22% per year, respectively for the up and down markets, which are large and 

economically meaningful difference in expected return.  These are very close to estimates 

in Bollerslev et al. (2015) in the US market. This supports the argument that when the 

market is doing well higher risk banks, as measured by the two betas, would have greater 
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returns than less risky banks. On the other hand, higher risk banks would do worse than 

less risky banks when the market is overall is doing poorly. We find that diffusion and 

jump beta remain significant in even after controlling for size and BM effects in up and 

down markets. The improvements in the adjusted-R2 statistics as compared to the 2-beta 

model support the modeling of the up and down market conditional relationships. 

Observing the relationship between size and returns, size is virtually not priced at all 

during up market and is priced negatively during down markets. The observe results 

argues against the distress risk explanation between the beta and size relationship. A 

number of authors have suggested that the size premium represents payment for some 

sort of distress risk. Campbell and Vuolteenaho (2004) suggest that the payment to small 

firms represents payment for a greater sensitivity to cash flow risk. Other authors (see 

for example, Vassalou and Xing (2004)) have suggested that the size premium may exist 

because small firms have greater default risk than large firms. Likewise, Chan and Chen 

(1991) argue that many small-firm securities are “fallen angels” that have declined in 

market value because of adverse market conditions and face the possibility of further 

distress. To the extent that small-firm securities do attract a premium for some form of 

distress or default risk, a relationship between the size effect and market conditions is 

clearly suggested. If small-firm securities attract a premium for distress risk, this 

premium ought to be realized when investors are generally optimistic. In market states 

where investors are pessimistic, firms with higher distress risk should experience low 

returns as investors re-value these securities downward to compensate for high default 

risk. Thus, in down markets small-firm securities should perform poorly relative to large-

firm securities, but in up-markets investors in small-firm securities is rewarded for 

holding distress or default risk. 

The hypothesis that a size effect resulting from payment to risk should be paid in up 

markets is consistent with arguments made by Lakonishok et al. (1994). They argue that 

value stocks ought to underperform glamor stocks in adverse market conditions if the 

value premium results from compensation for risk. This follows because in adverse 

market conditions high-risk value stocks ought to be unattractive to risk-averse investors. 

Further support for the hypothesis that a distress risk premium should be paid to size in 

up markets rather than in down markets is provided by Perez‐Quiros and Timmermann 

(2000). They argue that small firms rapidly lose asset value in recessions; therefore small 

firms should experience greater losses than large firms in bear market periods associated 
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with economic recessions. Thus the size premium, if paid for distress risk, ought to be 

paid in up markets. 

As reported in Table 10, statistics revealed size is virtually not priced at all during up 

markets and is priced negatively, with a monthly premium of 0.35%, during down 

markets. There is no relationship between size and returns in up markets after 

considering the role of beta. Contrary to the distress risk explanation of the size effect, 

the relationship between size and returns comes entirely from down markets. The 

observed results appear to contradict the generally hypothesized pricing relations. Our 

results are inconsistent with Campbell and Vuolteenaho (2004),  and  Vassalou and Xing 

(2004), arguments that the payment to small firms represents payment for a greater 

sensitivity to cash flow risk and greater default risk or these firms are more likely to get 

adversely affected in bad market states. Therefore our findings indicate that ‘relative 

distress’ argument used in Fama and French (1996) to justify risk adjustment using factor 

loadings on SMB portfolios can be questioned.  

It is plausible however that if small firms do face higher financial distress cost, they may 

optimally structure themselves (e.g. through financial leverage or other operating 

decisions) to insulate themselves against bad states of the world. Under those 

circumstances the stock returns may behave as we find here even though other aspects 

of financial performance may be more affected by bad times. This explanation is 

consistent with George and Hwang (2010) argument for distress risk and leverage puzzle 

in stock returns. Another explanation is that, the unique risk characteristics of firms in 

Japanese market may imply the existence of a significant negative size effect in down 

markets. To the extent that size reflects diversification of activities, liquidity, timeliness 

and quality of corporate information disclosure, and the level of transactions costs 

involved, larger firms tend to have lower non-market risk. However, a special feature of 

the Japanese market is that, unlike the US market, most large firms are in the finance and 

real estate property sectors, which are exposed heavily to systematic risk factors on an 

international scale, such as interest rate risk, inflation risk, and political uncertainties, 

whereas most small firms are engaged in trading or manufacturing business which is less 

vulnerable to market risk. So, large firms possess large betas and small firms possess 

small betas. This gives rise to a positive correlation between size and beta (See, Table 6). 

In sum, it may be generalized that large firms in Japanese market have large total risk 
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(large market risk plus small non-market risk) and small firms have small total risk (small 

market risk plus large non-market risk). This helps explain the positive (negative) size 

effect during up (down) markets. Thus, in the Japanese market, it may be argued that size 

also proxies for risk but with a pricing effect reverse to that generally suggested by theory 

and evidence.  

With respect to BM, a statistically significant negative relationship is found during the 

down markets, consistent with Pettengill et al. (2002). The results suggest that in good 

times when the market returns are up the market is less worried about bankruptcy. 

However, in bad times when the market returns are down, the market is more concerned 

about bankruptcy, distressed companies with high BM ratios will suffer low returns 

(security prices decrease) as the distressed risk is priced back into the security. Such an 

explanation implies a negative BM pricing effect during down markets. 

Overall, the consistent message from the regressions in Table 10 is that reward for 

bearing jump risk and diffusion risk is always positive, remarkably stable and statistically 

significant. Our findings provide strong evidence that high-risk stocks market outperform 

low-risk stocks markets when the realized world market is positive and similarly the 

high-risk stock markets incur higher losses when the realized world market return is 

negative. 

5. Robustness and Extensions 

5.1. Sub-sample and Sorting analyses 

This section describes several extensions of the analysis in section 4.3.1. To check the 

robustness of our empirical findings, following Wu and Lee (2015), we first extend the 

Eq. (2) to a model with regime dependent constant term: 𝛼𝑖,𝑡 = 𝛼1,𝑡 for up market and 

𝛼𝑖,𝑡 = 𝛼2,𝑡 for down market. The empirical results are reported in Table 11.  

The estimates of 𝛼1,𝑡  and 𝛼2,𝑡  are now significantly positive and significantly negative, 

respectively, which captures the positive mean excess return in the up market and the 

negative mean excess return in down market. The coefficients for diffusion beta and jump 

beta are qualitatively similar to those with a time-invariant constant term reported in 

Table 10. 

As Lanne and Saikkonen (2006) point out the presence of a constant term renders 

conditional mean estimation very inaccurate when the constant term estimates appears 
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to be significant, we therefore employ the restriction 𝛼𝑖,𝑡 =  0 to address this estimation 

problem. As shown in Table 11, the estimated coefficients are qualitatively similar those 

reported in Table 10.  

The existing literature indicates that risk factors such as conditional volatility (Lundblad 

2007) or implied volatility (Connolly et al. 2005) are elevated during recessions. 

Investors also tend to avoid risky assets and behave differently under extreme market 

conditions. Thus we investigate whether extreme market movements, such as financial 

crisis, could alter the parametric estimates of the risk-return relationship. We re-estimate 

our jump-diffusion model under pre-crisis, crisis, and post-crisis periods and show how 

the risk-return relationship varies under different economic conditions. Each of the three 

sub periods describes a different episode of the stock market. We again concentrate on 

up and down markets.  

Table 12 presents these pre-crisis, crisis and post-crisis results. In the pre-crisis period, 

exposure to diffusion and jump risks are rewarded with returns during up markets and 

are penalized with losses during down markets. In transitioning from the pre-crisis to the 

crisis period, we find that both the premium and discount for diffusion beta increase 

whereas both the premium and discount for the jump beta decrease in the crisis period. 

By contrast, both the premium and discount for the diffusion and jump beta show 

opposite results in transitioning from the crisis to the post-crisis period.  In the pre-crisis 

(or stable) period both the betas are priced significantly, with the jump premium larger 

than the diffusion premium. Large surprises are priced higher than small surprises. In the 

crisis (or unstable) period both the betas are still significantly priced but the diffusion 

premium is now larger than the jump premium.  Small surprises are priced higher than 

large surprises. In the post-crisis (or recovery) period only the jump risk is priced 

significantly. Any large good news is wanting and much appreciated and any further large 

bad news is penalized heavily.  

Given the above relationships found between betas and returns, we test for symmetry 

between betas and returns during up and down markets over the full sample and the 

three periods to compare the relative magnitudes of the different premiums for both the 

diffusion and jump betas. A two population t-test is used to test the symmetrical 

relationship between the mean of estimated up market risk premium and the estimated 

down market risk premium from the Equation (24). The results reported in Panel A of 
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Table 13 clearly do not reject the null hypothesis of symmetry over the total testing 

period, and the three sub periods with the exception of the pre-crisis period (only at the 

10% significance level).  We can safely say that the absolute values of the premiums for 

both the diffusion and jump risks are generally symmetrical for up and down markets. 

In addition, since the premiums associated with discontinuous, or jump, risks often 

appear to be quite different from the premiums associated with diffusion risks, we test 

whether the premiums associated with diffusion and jump risks are of equal magnitude 

by testing the equality of pairs of the regression coefficients (𝛾𝑐 𝑢𝑝 and 𝛾𝑗 𝑢𝑝 ; 𝛾𝑐 𝑑𝑜𝑤𝑛 and 

𝛾𝑗 𝑑𝑜𝑤𝑛 ) as shown in Panel B of Table 13. Comparing the relative magnitudes of the 

different premiums, we see that the symmetrical relationship only exists in the up 

markets of the total sample and the pre-crisis sub-sample periods. However, the 

estimated risk premiums for diffusion risk and jump risk reject symmetry for the down 

markets of all periods and the up markets of the crisis and post-crisis periods.  We also 

notice (in conjunction with Table 12) that for the crisis period the diffusion component 

for up markets are the dominant pricing ingredients whereas for the post-crisis period 

the jump component is the dominant factor. During the crisis period, we do not expect 

positive jumps and consequently the market does not have a premium for positive jumps. 

In post-crisis, the market compensates by having a higher premium for positive jumps 

(i.e. expecting a fast recovery), and at the same time having a higher discount for the 

negative jumps as still remember the recent past crisis.  For the pre-crisis period, we do 

not observe a clear difference between the estimated risk premiums for diffusion and 

jump risks during up markets and down markets.  

For our robustness checks, we use size sorted portfolio analysis to see whether our 

baseline results remain valid; see Table 14. Our results indicate that when compared with 

low-beta ones, high-beta portfolios earn higher returns in up markets and incur losses in 

down markets. For comparability with previous studies, we also use Fama–MacBeth 

regressions to estimate model (3). We present the regression results in Table 15. Over all 

our base line results remain robust, although some coefficients lose significance. The 

results are consistent with Bollerslev et al. (2015) who observed a positive relation 

between a stock’s return and its jump beta for all stocks that are constituents in the S&P 

500 index over 1993-2010 (that is, the jump beta may have a different price of risk than 

the diffusion beta), and with Schuermann and Stiroh (2006) and Viale et al. (2009) who 
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provide evidence on the risk factors priced in bank equities. Schuermann and Stiroh 

(2006) examine the weekly returns for the U.S. banks form 1997-2005 and show that the 

market risk factor dominates in explaining bank returns, followed by the Fama-French 

factors. Viale et al. (2009) identify common risk factors in US banks stocks from 1986-

2003 applying CAPM, Fama-French factors , and ICAPM and find that market factor are 

significant explanators of the cross section of bank stock returns.  

5.2. Control for bank-specific risk factors 

The linear factor models used so far intend to capture risks faced by firms in general. 

While one could argue that these asset pricing models should also work for banks, they 

were not constructed to capture bank-specific risks. One potential concern is that we are 

not adequately controlling for such risks, implying that we might be merely capturing 

that high-risk banks are outperform than low-risk banks. To address this, we evaluate the 

role of specific fundamentals variables in explaining the cross-section of expected bank 

stock returns. Subsequently, we employ variables that have been shown to be important 

in determining the fundamental riskiness of banks of reflect changes in business practices 

that may affect bank risks.  

We now rerun our regressions while adding four bank-specific risk factors to the jump-

diffusion linear factor model. The bank-specific risk factors that we add to the our models 

include: tier 1 risk-based capital ratio, market-valued capital ratio, profitability, and 

leverage (Bouwman et al. 2017; Chen 2011). Table 16 reports the results. The first three 

model of results consider the role bank fundamentals variables in explaining the cross-

section of expected bank stock returns and the final three columns for the jump beta. The 

second and third model explore subsets of the explanatory variables, with tier 1 ratio 

included (excluded) in model 2(3) and the capital ratio excluded (included). Model (4) of 

Table 16, we examine the effect of including both the diffusion and jump beta estimates 

and all control variables. From Table 16, it can be observed that, even in combination with 

variable tier 1 risk-based capital ratio, total risk-based capital ratio, profitability, and 

leverage, size and BM, the significant relationship between average returns and diffusion 

betas (and jump betas) persists in all bivariate regressions. This finding implies that 

during up markets high beta bank exhibit higher returns than low beta bank supporting 

while during down markets high beta bank earn a lower return than low beta bank. 
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5.3. Diffusion risk, Jump risk and ex-ante expected returns 

Yet virtually all of the empirical literature use realized returns as a proxy for expected 

returns because market data on market expectations of future returns are not available.23 

Consistent with this literature, the results we discuss so far focus on cotemporaneous 

relations between diffusion and jump betas and bank stock returns. During his AFA 

Presidential Address, however, Elton (1999) argued that realized returns are a poor 

measure of expected returns and that more effort should be put into estimating expected 

returns. We therefore now verify our results using expected returns in Eq. (25). Table 17 

shows that when we use ex-ante measures of expected (instead of realized) returns, 

diffusion beta and jump beta is priced in both up and down markets: high risk banks do 

earn higher returns than low-risk banks during up market and vice versa for down 

market. These results confirm our main results. 

5.4. Time series of jump betas 

Economic risks change with business cycles, and investors' attentiveness to risks varies 

with time. Accordingly, although betas do not change dramatically over a short period of 

time, they can be time-varying over a long horizon. If jump betas reflect such risks well, 

they would change over time in accordance with the risks. Therefore, in this section, we 

investigate how jump betas vary in a descriptive way. We illustrate the time series of 

jump betas along with diffusion and jump betas to examine whether the change in jump 

betas over time differs from that of the other betas. Figure 3 shows that the time series of 

portfolio betas, based on monthly quintile sorts for each of the three different betas and 

all of the individual stocks in the sample. The figure suggests that the variation in the 

standard beta and diffusion beta sorted portfolios in Panel A and B are clearly fairly close, 

as would be expected. However, the plots for the jump beta quintle portfolios in Panel C, 

are distinctly different and more dispersed than the standard and diffusion betas quintile 

portfolios. Jump beta is significantly different from diffusion and standard beta. Our 

estimates shows that there is interesting variation across assets and across time in the 

jump components of the market beta. Therefore, jump betas incorporate information 

                                                           
23 The underlying assumption is that information surprises tend to cancel out over longer time horizons 
and realized returns are therefore an unbiased estimate of expected returns. 
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about the overall economic conditions well and this property can be related to the 

significant premium with jump betas. 

5.5. Relationship between jump betas and liquidity 

As the previous sections show, jump betas appear to deliver important fundamental 

pricing information. However, there may be a concern that the information embedded in 

jump betas is associated with liquidity because liquidity constraints are negatively 

related to business conditions and positively related to risks. In addition, as Pastor and 

Stambaugh (2003) and Acharya and Pedersen (2005) document that market wide 

liquidity is an important factor for pricing stocks. To confirm that the results in this paper 

are not driven by liquidity effects, we investigate the correlations between the monthly 

jump betas and the proxies for liquidity. Considering the literature, we use the logarithm 

of monthly number of shares traded (trading volume), and the monthly realized variance 

as liquidity proxies. Table 18 reports the correlations between jump betas and each 

liquidity proxy. Overall, the correlations between jump betas and liquidity proxies are 

less than 10%. In addition, the correlations are less than 28% during crisis and post-crisis, 

respectively. 

Although a simple correlation would not provide a decisive result, we believe that such 

low correlations are sufficient to support the conclusion that jump betas contain 

fundamental information that is different from that of liquidity. Considering these 

findings, we argue that jump betas are significantly related to economic fundamentals 

and that the dynamic variations in the cross-section of jump betas are sufficiently wide 

to clearly distinguish the characteristics of individual stocks. 

The results support the initial hypothesis of this paper that jump beta is larger than that 

of diffusion  beta, in line with the approach of Patton and Verardo (2012) emphasizing 

that the role of learning in disseminating information to the market is supported by 

higher beta around information rich events (such as jumps). Further, our panel results 

show that the jump betas convey more information than the diffusion beta in the 

explanation of average returns, supporting the importance of separating jump and 

diffusion beta in assessing risk premia. 
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6. Conclusions 

Empirical asset pricing literature have been widely documented that stock returns 

exhibit both stochastic volatility and jumps. Significant jumps have been found in stock 

prices and equity market indexes, suggesting that jump risk is part of systematic risks. 

Since jump risk is priced, adding jump risk into the traditional finance models has 

significant empirical and theoretical meanings. This paper aims to provide an empirical 

framework to tie jumps into a fundamental economic model of valuation—the jump-

diffusion two-beta asset pricing model.  

In this paper, we seek to understand how an individual bank’s equity prices respond to 

continuous and discrete market moves and how these corresponding distinct systematic 

risks or betas, are priced. Particularly, we investigate the systematic diffusive and jump 

risks exposures of Japanese banks for the 2000-2012 period. We use an extension of 

CAPM to relate a bank stock’s return to two types of systematic risk exposures as 

measured by two types of beta: the diffusion beta and the jump beta. The diffusion beta 

is associated with the stock’s sensitivity to a market continuous movement while, jump 

beta is associated with the stock’s sensitivity to a market discontinuous movement.  

The estimated jump betas are consistently larger than the diffusion betas in our empirical 

results, and firm fundamentals play important roles in determining firm's cost of capital 

in the 2-beta model. We find that large banks are more sensitive to jumps than the small 

banks and highly leverage banks are more exposed to market jumps. Profitable banks are 

sensitive to both continuous and jump market moves. We then empirically investigate 

whether the diffusive and jump risks are separately priced under both conditional and 

unconditional market states. Our empirical findings suggest that jump risks are priced 

separately from the corresponding diffusive risks. Assuming that investors tend to 

behave differently under up and down market conditions, we also test whether the risk 

premiums for diffusion and jump risk are asymmetric under different market conditions.  

We introduce and test a new 4-beta CAPM model by combining the diffusion and jump 

betas of Todorov and Bollerslev (2010) and the conditional betas of Pettengill et al. 

(1995), into a single model to detect any asymmetries under differing market conditions. 

We demonstrate that investors exposed to diffusion and jump systematic risks on their 

investment in Japanese bank equities receive excess positive returns in upturn market, 

but that they suffer excess losses in downturn market. We also provide evidence that 
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under extreme market movements, such as during the recent financial crisis, the absolute 

value of the beta premiums can differ substantially in significance and magnitude.     

Our main contribution is that we confirm evidence that both diffusion and jump 

systematic risks are separately priced by Japanese investor and they are not related to 

one another. Our results also suggest that portfolios designed to hedge large 

discontinuous market movements might have to be constructed differently from 

portfolios intended to hedge the more common continuous day-to-day market 

movements. Thus, disentangling and pricing the two types of systematic risks separately 

is clearly important for the investment and risk management decisions of portfolio 

investors and companies.
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Table 1: List of Sample Banks     

No Banks  No Banks  No Banks  

1 Aichi Bank 21 Hiroshima Bank 41 Shinsei Bank 

2 Akita Bank 22 Hokkoku Bank 42 Shizuoka Bank 

3 Aomori Bank 23 Hokuetsu Bank 43 Sumito Mitsui  Financial Gp 

4 Aozora Bank 24 Hokuhoku Financial Gp. 44 Suruga Bank 

5 Awa Bank 25 Hyakugo Bank 45 Tochigi Bank 

6 Bank Of Iwate 26 Hyakujushi Bank 46 Toho Bank 

7 Bank Of Kyoto 27 Iyo Bank 47 Tokoyo Tomin Bank 

8 Bank Of Nagoya 28 Joyo Bank 48 Yachiyo Bank 

9 Bank Of Okinawa 29 Juroku Bank 49 Yamagata Bank 

10 Bank Of The Ryukyus 30 Kagoshima Bank 50 Yamaguchi Finl.G. 

11 Bank Of Yokohama 31 Keiyo Bank     

12 Chiba Bank 32 Miyazaki Bank     

13 Chugoku Bank 33 Musashino Bank     

14 Daishi Bank 34 Nanto Bank     

15 Fukui Bank 35 Nishi-Nippon City Bank     

16 Fukuoka Financial Group 36 North Pacific Bank     

17 Gunma Bank 37 Ogaki Kyoritsu Bank     

18 Hachijuni Bank 38 Oita Bank     

19 Higashi Nippon Bank 39 San-In Godo Bank     

20 Higo Bank 40 Seventy-seven Bank     

 

Table 2: Market capitalization and turnover of analyzed stock market 

Stock Exchange (Country)       

Tokoyo(Japan) Stock market capitalization Turnover ratio  

2001 60.67 72.37  
2002 54.10 73.06  
2003 62.05 85.13  
2004 74.55 98.84  
2005 91.25 119.79  
2006 105.95 135.45  
2007 104.49 142.74  
2008 86.09 140.84  
2009 67.10 127.10  
2010 74.60 114.50  
2011 68.58 108.90  
2012 61.80 99.80  
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Table 3: Summary Statistics for Daily Volatilities and Jumps (figure scaled by 100 
with the exception of skewness and kurtosis) 

  Mean Median Max Min Std. Dev. Skewness Kurtosis 

𝑅𝑉𝑡 0.0013 0.0004 0.0952 0.0000 0.0044 11.900 186.429 

√𝑅𝑉𝑡  0.2693 0.2119 3.0857 0.0049 0.2472 3.942 29.964 

𝐵𝑉𝑡 0.0012 0.0003 0.0998 0.0000 0.0043 13.111 231.500 

√𝐵𝑉𝑡  0.2435 0.1847 3.1595 0.0034 0.2452 3.994 31.201 

𝐽𝑡  0.0002 0.0000 0.0173 0.0000 0.0006 15.706 362.712 

√𝐽𝑡 0.0905 0.0674 1.3151 0.0000 0.1032 3.029 22.806 

 

Table 4: Descriptive statistics of High-frequency jumps 
Panel A: Yearly statistics of significant jumps.  
Yearly estimates for Nikkei 225 market index. Number of jumps denote the number of days with jumps. 
Prop denotes the proportion of days with jumps. The statistic based on Brandroff-Nielson and Shephard 
framework is used to identify days with jump. Thereafter. The test Anderson et al., (2007) is applied to 
determine the sign of jumps. 

Year 
Jump 
freq. 

Jump 
prop 

Positive 
jump freq. 

Positive 
jump prop 

Negative 
jump freq. 

Negative 
jump prop 

2001 14 5% 6 4% 8 6% 

2002 26 10% 8 6% 18 14% 

2003 14 5% 6 4% 8 6% 

2004 39 14% 13 9% 26 20% 

2005 33 12% 21 15% 12 9% 

2006 20 7% 16 11% 4 3% 

2007 10 4% 5 4% 5 4% 

2008 17 6% 9 6% 8 6% 

2009 25 9% 16 11% 9 7% 

2010 30 11% 17 12% 13 10% 

2011 23 8% 16 11% 7 5% 

2012 21 8% 8 6% 13 10% 

Total no of 
Jump 

272   141   131   

 

Panel B: Summary statistics of jump size 
The Table displays the summary statistics for mean jump size as well as exhibits statistical characteristics 
of positive and negative jumps. 

  Total sample period 

   Mean  Med  Std. Dev. 

Jump size -0.0029 -0.0011 0.0411 

Postive jump size 0.0188 0.0084 0.0329 

Negative jump size -0.0261 -0.0182 0.0362 

  Pre-crisis period 

Jump size -0.0033 -0.0012 0.0423 

Postive jump size 0.0227 0.0142 0.0301 

Negative jump size -0.0271 -0.0157 0.0376 

  Crisis period 
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Jump size -0.0078 -0.0017 0.0560 

Postive jump size 0.0243 0.0193 0.0311 

Negative jump size -0.0453 -0.0460 0.0560 

  Post-crisis period 

Jump size -0.0002 -0.0001 0.0343 

Postive jump size 0.0125 0.0042 0.0364 

Negative jump size -0.0178 -0.0182 0.0215 

 

Table 5: Average monthly beta 

    95% confidence interval   95% confidence interval 

Banks Beta C CI_low CI_up Beta J CI_low CI_up 

Aichi bank 0.10 0.018 0.180 0.78 0.765 0.804 

Akita bank 0.14 0.046 0.207 0.77 0.753 0.795 

Aomori bank 0.09 0.000 0.146 0.64 0.620 0.651 

Aozora bank 0.38 0.266 0.496 1.14 1.088 1.191 

Awa bank 0.16 0.080 0.235 0.82 0.801 0.843 

Bank of Iwate 0.15 0.063 0.224 0.77 0.748 0.796 

Bank of Kyoto 0.40 0.318 0.486 0.92 0.902 0.946 

Bank of Nagoya 0.21 0.123 0.296 0.93 0.903 0.955 

Bank of Okinawa 0.10 0.014 0.174 0.70 0.676 0.715 

Bank of the Ryukyus 0.24 0.149 0.318 0.76 0.734 0.779 

Bank of Yokohama 0.63 0.538 0.720 1.09 1.067 1.123 

Chiba bank 0.65 0.554 0.735 1.16 1.141 1.185 

Chugoku bank 0.29 0.211 0.372 0.85 0.827 0.869 

Daishi bank 0.21 0.118 0.288 0.92 0.904 0.940 

Fukui bank 0.10 0.011 0.165 0.73 0.713 0.747 

Fukuoka financial group 0.68 0.587 0.782 1.47 1.433 1.508 

Gunma bank 0.44 0.348 0.529 1.07 1.051 1.099 

Hachijuni bank 0.39 0.297 0.472 1.08 1.058 1.102 

Higashi Nippon bank 0.15 0.041 0.224 0.74 0.720 0.763 

Higo bank 0.18 0.099 0.262 0.81 0.793 0.828 

Hiroshima bank 0.33 0.241 0.411 0.95 0.931 0.974 

Hokkoku bank 0.17 0.088 0.250 0.83 0.818 0.848 

Hokuetsu bank 0.10 -0.014 0.157 0.70 0.673 0.726 

Hokuhoku finl.gp. 0.41 0.298 0.515 1.21 1.180 1.250 

Hyakugo bank 0.23 0.135 0.302 0.89 0.871 0.915 

Hyakujushi bank 0.22 0.133 0.302 1.02 0.999 1.047 

Iyo bank 0.32 0.237 0.404 0.93 0.905 0.947 

Joyo bank 0.40 0.306 0.487 1.12 1.098 1.142 

Juroku bank 0.25 0.160 0.334 0.94 0.914 0.958 

Kagoshima bank 0.20 0.114 0.278 0.81 0.794 0.827 

Keiyo bank 0.25 0.149 0.316 0.84 0.824 0.865 

Miyazaki bank 0.09 0.002 0.162 0.62 0.609 0.640 

Musashino bank 0.34 0.247 0.416 0.99 0.971 1.015 

Nanto bank 0.01 -0.046 0.053 0.50 0.499 0.505 
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Nishi-Nippon city bank 0.34 0.242 0.442 1.16 1.121 1.198 

North Pacific bank 0.08 0.289 0.496 1.13 0.361 1.183 

Ogaki Kyoritsu bank 0.20 0.116 0.281 0.91 0.878 0.935 

Oita bank 0.11 0.030 0.194 0.77 0.749 0.783 

San-in Godo bank 0.24 0.159 0.325 0.90 0.875 0.924 

Seventy-seven bank 0.41 0.316 0.498 1.06 1.036 1.092 

Shinsei bank 0.50 0.383 0.620 1.35 1.310 1.393 

Shizuoka bank 0.62 0.536 0.702 1.06 1.033 1.081 

Sumito Mitsui finl.gp 0.88 0.768 0.977 1.50 1.463 1.543 

Suruga bank 0.44 0.351 0.533 1.04 1.019 1.068 

Tochigi bank 0.13 0.039 0.198 0.69 0.668 0.706 

Toho bank 0.15 0.058 0.224 0.73 0.703 0.754 

Tokoyo Tomin bank 0.36 0.260 0.451 1.09 1.065 1.119 

Yachiyo bank 0.14 0.045 0.230 0.46 0.431 0.489 

Yamagata bank 0.09 0.016 0.162 0.71 0.697 0.720 

Yamaguchi finl. gp 0.45 0.361 0.538 1.21 1.187 1.242 

 

Table 6: Descriptive statistics and Correlation Matrix 

Panel A: Descriptive statistics of the firm characteristics 

Variable  Obs Mean Std. Dev. Median 25th percentile 75th percentile 

Firm size 6510 8.20 0.34 8.16 7.95 8.42 

Profitability (%) 6450 12.08 16.30 14.17 10.47 17.99 

Leverage (%) 6585 94.24 1.41 94.35 93.58 95.13 

Capital ratio (%) 6585 5.96 3.10 5.47 4.58 6.30 

       
Panel B: Correlation Matrix of all the Variables 

Variables Std. beta Diff beta Jump beta Firms size Profitability Leverage Capital ratio 

Std. beta 1       

Diffu beta 0.80 1      

Jump beta 0.67 0.38 1     

Firms size 0.56 0.56 0.26 1    

Profitability 0.08 0.04 0.08 -0.04 1   

Leverage 0.20 0.23 0.10 0.38 -0.24 1  

Capital ratio 0.01 0.02 0.01 -0.02 0.06 0.02 1 
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Table 7: Betas and Firm Characteristics   
This table presents the regression results between the different betas and firm characteristics. The sample 
consists of 6522 observations from 47 banks in Japan, available from the Thompson DataStream database 
from 2001-2012. Firm Size= natural log of market capitalization. Profitability= Earnings before interest, 
taxes, depreciation and amortization /Total assets. Leverage Ratio= Total debt over total assets. Capital 
Ratio= book value of equity divided by total assets. All firm characteristics data are obtained from the 
DataStream database. Time dummies are a dummy variable that accounts for the year fixed effects (FE). 
Standard errors are displayed in parentheses below the coefficients. Time dummies are included but not 
shown. The asterisks *, **, and *** indicate the significance at the 10%, 5%, and 1% level, respectively. The 
baseline econometric model is: 
𝜷𝒊,𝒕 = 𝜸𝟏𝑭𝒊𝒓𝒎 𝒔𝒊𝒛𝒆𝒊,𝒕 + 𝜸𝟐𝑷𝒓𝒐𝒇𝒊𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚𝒊,𝒕 + 𝜸𝟑𝑳𝒆𝒗𝒆𝒓𝒂𝒈𝒆𝒊,𝒕 + 𝜸𝟒𝒄𝒂𝒑𝒊𝒕𝒂𝒍 𝒓𝒂𝒕𝒊𝒐𝒊,𝒕 + 𝒕𝒊𝒎𝒆 𝒅𝒖𝒎𝒎𝒊𝒆𝒔𝒊,𝒕 + 𝜺𝒊,𝒕 

  �̂�𝒄  �̂�
𝒋

  

Variables (1) (2) (3) (1) (2) (3) 

Firm Size 0.321*** 0.312*** 0.318*** 0.421*** 0.363*** 0.421*** 

  (0.023) (0.022) (0.024) (0.044) (0.040) (0.045) 

Profitability 0.001*** 0.001*** 0.001*** 0.001** 0.001** 0.001** 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Leverage 0.008*  0.004 0.033***  0.034*** 

  (0.004)  (0.006) (0.010)  (0.011) 

Capital ratio  -0.006** -0.004  -0.006 -0.001 

   (0.003) (0.003)  (0.004) (0.005) 

Constant -3.311*** -2.439*** -2.876*** -6.156*** -2.480*** -6.219*** 

  (0.540) (0.175) (0.655) (1.135) (0.330) (1.296) 

N 6450 6450 6450 5194 5194 5194 

Chi-squared 4053.5 4056.7 4056.5 1089.7 1077.4 1087.2 

R-squared 0.49 0.48 0.49 0.21 0.20 0.21 

 

Table 8: Betas and Firm Characteristics (The impact of GFC period)  
This table represents the impact of the financial crisis on the relation between different betas and its 
determinants. 𝐷𝑡= GFC dummy which equals 1 for crisis period if the year is July 2007- May 2009 and 
otherwise zero to account for non-crisis period; 𝐷𝑡 × 𝑋𝑖.𝑡= interaction term between GFC dummy (𝐷𝑡) and 
each bank-specific variable 𝑋𝑖.𝑡 (i.e. firm size, profitability, debt leverage, and capital ratio). Time dummies 
are a dummy variable that accounts for the year fixed effects (FE). Standard errors are displayed in 
parentheses below the coefficients. Time dummies are included but not shown. The asterisks *, **, and *** 
indicate significance at the 10%, 5%, and 1% level, respectively. 

  �̂�𝒄  �̂�
𝒋

 

Variables (1) (2) (3) (1) (2) (3) 

Firm Size 0.320*** 0.313*** 0.313*** 0.426*** 0.374*** 0.443*** 

  (0.023) (0.022) (0.024) (0.043) (0.039) (0.041) 

Profitability 0.001*** 0.001*** 0.001*** 0.001** 0.001** 0.001** 

  (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 

Leverage 0.007  0.003 0.029***  0.028*** 

  (0.005)  (0.006) (0.010)  (0.011) 

Capital ratio  -0.005* -0.004  -0.006 -0.003 

   (0.003) (0.003)  (0.004) (0.004) 

Profitability*GFC dummy 0.001** 0.001** 0.001** -0.0001 -0.001 -0.001 

  (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 

Leverage*GFC dummy -0.005  -0.007 0.029  0.044** 
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  (0.005)  (0.006) (0.019)  (0.021) 

Capitalratio*GFC dummy  -0.001 -0.002  0.005 0.014 

   (0.002) (0.002)  (0.008) (0.009) 

GFC dummy 0.575 0.085*** 0.740 -2.748 0.022 -4.159** 

  (0.511) (0.018) (0.572) (1.808) (0.064) (2.021) 

Constant -3.211*** -2.450*** -2.701*** -5.825*** -2.573*** -5.872*** 

  (0.544) (0.175) (0.663) (1.131) (0.316) (1.198) 

N 6450 6450 6450 5194 5194 5194 

Chi-squared 4155.3 4157.9 4153.4 1100.0 1092.5 1128.6 

R-squared 0.49 0.49 0.49 0.21 0.20 0.21 
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Table 9: Unconditional Risk-Return trade-off for Individual Banks   
The table reports estimates from unconditional panel regressions of monthly stock returns without 
splitting markets into up and downs for individual stocks on just their stock market betas (Beta), Size (in 
natural logarithm) and BM (in natural logarithm) over the whole sample period. The sample consists of 47 
banks in Japan that are constituents of Nikki 225 index over the period of 2001-2012. Clustered Standard 
errors are displayed in parentheses below the coefficients. The asterisks *, **, and *** indicate significance 
at the 10%, 5%, and 1% level, respectively. 

  Model 

Risk Premia (1) (2) (3) (4) (5) 

Standard Beta 0.007*         

  (0.004)         

Diffusion  Beta   0.007*   0.006 0.005 

    (0.004)   (0.004) (0.004) 

Jump Beta     0.003* 0.003* 0.003* 

      (0.001) (0.002) (0.002) 

Size         0.708 

          (1.08) 

BM         0.028*** 

          (0.007) 

Constant -0.009*** -0.008*** -0.009*** -0.009*** -0.088 

  (0.002) (0.002) (0.002) (0.002) (0.131) 

R-squared 0.04 0.04 0.04 0.04 0.04 
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Table 10: Risk-Return trade-off for Individual Banks during up and down 
markets 
The table reports estimates from pooled regressions of monthly stock returns in up and down markets for 
individual stocks on just their stock market betas (Beta) over the whole sample period. The sample consists 
of 47 banks in Japan that are constituents of the Nikki 225 index over the period of 2001-2012. Clustered 
Standard errors are displayed in parentheses below the coefficients. The asterisks *, **, and *** indicate 
significance at the 10%, 5%, and 1% level, respectively. 

  Model 

Risk Premia (1) (2) (3) (4) (5) 

  Up Market 

Standard Beta 0.077***     

  (0.004)     

Diffusion Beta  0.089***  0.028*** 0.015*** 

   (0.005)  (0.004) (0.004) 

Jump Beta   0.040*** 0.033*** 0.006*** 

    (0.003) (0.003) (0.002) 

Size     0.328 

      (0.207) 

BM     -0.002 

      (0.005) 

  Down Market 

Standard Beta -0.086***         

  (0.004)         

Diffusion  Beta   -0.102***   -0.024*** -0.016*** 

    (0.005)   (0.006) (0.006) 

Jump Beta     -0.045*** -0.039*** -0.006** 

      (0.004) (0.004) (0.003) 

Size         -0.350* 

          (0.200) 

BM         -0.017*** 

          (0.002) 

Constant 0.001 0.002 0.001 0.001 0.004 

  (0.001) (0.001) (0.003) (0.003) (0.025) 

R-squared 0.45 0.29 0.43 0.44 0.57 
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Table 11: Risk-Return trade-off for Individual Banks during up and down markets 
with a regime dependent constant term 
The table reports premia estimates and their standard errors as in Table 2, but for different constant terms. 
Clustered Standard errors are displayed in parentheses below the coefficients. The asterisks *, **, and *** 
indicate significance at the 10%, 5%, and 1% level, respectively. 

  Monthly Return 

Risk Premia Constant 0 Constant=0 

  Up Market 

Diffusion  Beta 0.013*** 0.029*** 

  (0.004) (0.005) 

Jump Beta 0.005** 0.034*** 

  (0.002) (0.002) 

Constant 0.045*** - 

  (0.002)   

  Down Market 

Diffusion  Beta -0.006 -0.024*** 

  (0.005) (0.006) 

Jump Beta -0.008*** -0.038*** 

  (0.002) (0.003) 

Constant -0.046*** - 

  (0.003)   

R-Squared 0.56 0.44 

 

Table 12: Risk-Return trade-off for Individual Banks during up and down markets: 
Sub Sample Analysis 
The table reports premia estimates and their standard errors as in Table 2, but for different subsamples. 
Clustered Standard errors are displayed in parentheses below the coefficients. The asterisks *, **, and *** 
indicate significance at the 10%, 5%, and 1% level, respectively. 

  Sample Periods     

Risk Premia Pre-crisis Period Crisis Period Post-Crisis Period 

  Up Market 

Diffusion  Beta 0.035*** 0.057*** 0.006 

  (0.007) (0.008) (0.005) 

Jump Beta 0.040*** 0.016*** 0.046*** 

  (0.004) (0.005) (0.005) 

  Down Market 

Diffusion  Beta -0.023*** -0.046*** -0.008 

  (0.007) (0.013) (0.010) 

Jump Beta -0.038*** -0.022** -0.041*** 

  (0.004) (0.009) (0.006) 

Constant 0.001 -0.004 -0.009* 

  (0.002) (0.006) (0.005) 

R-Squared 0.41 0.45 0.52 
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Table 13: Test of Symmetry Hypothesis 
The table report the t-statistic for testing the symmetry hypothesis between the risk premia 
𝛾𝑐 𝑢𝑝 𝑎𝑛𝑑 𝛾𝑗 𝑑𝑜𝑤𝑛  in up and down markets. Results are for the full testing period as well as sub sample 

periods. The asterisks *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. 

Panel A     

 Full Sample period Pre-crisis  Crisis  Post-crisis  
 t-statistic 

𝛾𝑐 𝑢𝑝 + 𝛾𝑐 𝑑𝑜𝑤𝑛 = 0 0.37 1.13 0.51 0.04 

𝛾𝑗 𝑢𝑝 + 𝛾𝑗 𝑑𝑜𝑤𝑛 = 0 0.61 0.08 0.24 0.20 

Panel B     

 Full Sample period Pre-crisis  Crisis Post-crisis 
 t-statistic 

𝛾𝑐 𝑢𝑝 + 𝛾𝑗 𝑢𝑝 = 0 0.50 0.22 15.64*** 23.46*** 

𝛾𝑐 𝑑𝑜𝑤𝑛 + 𝛾𝑗 𝑑𝑜𝑤𝑛 = 0 2.74* 1.75 1.37 5.17** 

 
Table 14: Risk-Return trade-off for size-sorted stock portfolios during up and down 
markets  
This table reports the estimates of the risk prices from pooled OLS regression using size sorted portfolios, 
which are rebalanced each year. Standard errors are displayed in parentheses below the coefficients. The 
asterisks *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. 

  Size Sorted Portfolios (Quintiles) 

Premia Small 2 3 4 Large 

  Up Market 

Diffusion  Beta 0.031*** 0.022** 0.0320*** 0.065*** 0.054*** 

  (0.007) (0.010) (0.012) (0.017) (0.017) 

Jump Beta 0.019*** 0.039*** 0.026*** 0.034*** 0.046*** 

  (0.006) (0.007) (0.005) (0.007) (0.008) 

  Down Market 

Diffusion  Beta -0.049*** -0.021** -0.033** -0.065*** -0.050** 

  (0.008) (0.010) (0.015) (0.016) (0.024) 

Jump Beta -0.028*** -0.035*** -0.045*** -0.032*** -0.042*** 

  (0.007) (0.006) (0.006) (0.006) (0.013) 

Constant 0.012** -0.003 0.011*** 0.003 0.007 

  (0.005) (0.005) (0.004) (0.004) (0.007) 

 

 
  



58 
 

Table 15: Fama-Macbeth cross-sectional regressions 
This table investigates the cross-sectional pricing of jump and continues risk in up and down markets. The 
sample period is from January 2001 to December 2012. We run Fama–MacBeth regressions of 12-month 
excess returns on contemporaneous realized betas. Observations are at the monthly frequency and we 
adjust standard errors accordingly using 2 Newey–West lags. Standard errors are displayed in parentheses 
below the coefficients. The asterisks *, **, and *** indicate significance at the 10%, 5%, and 1% level, 
respectively. 

  Model 

Risk Premia (1) (2) (3) (4) (5) 

  Up Market 

Standard Beta 0.025         

  (0.058)         

Diffusion  Beta   0.004   0.002 0.025 

    (0.086)   (0.020) (0.026) 

Jump Beta     0.037*** 0.031*** -0.005 

      (0.005) (0.006) (0.021) 

Size         -0.006 

          (0.219) 

BM         -0.001 

          (0.006) 

  Down Market 

Standard Beta -0.093***         

  (0.008)         

Diffusion  Beta   -0.091***   -0.019 -0.067* 

    (0.024)   (0.012) (0.037) 

Jump Beta     0.046*** -0.045*** -0.011 

      (0.005) (0.007) (0.016) 

Size         -0.377* 

          (0.225) 

BM         -0.017 

          (0.017) 

Constant 0.002 0.002 0.001 0.001 0.035 

  (0.004) (0.004) (0.004) (0.004) (0.029) 

R-squared 0.40 0.29 0.39 0.45 0.55 
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Table 16: Risk-Return trade-off for Individual Banks during up and down markets 
controlling explicitly for various bank-specific risk factors 
This table uses to examine the relation between bank betas and bank stock returns in up and down markets 
for individual stocks over the whole sample period while controlling explicitly for various bank-specific 
risk factors. The sample consists of 47 banks in Japan that are constitutes of Nikki 225 index over the period 
of 2001-2012. Firm Size= natural log of market capitalization. Profitability= Earnings before interest, taxes, 
depreciation and amortization /Total assets. Leverage Ratio= Total debt over total assets. The regulatory 
capital ratios include: Tier 1 Risk-Based Capital Ratio= tier 1 capital over total risk-weighted assets, and 
Market-valued Capital Ratio= market value of equity divided by total assets. Clustered Standard errors are 
displayed in parentheses below the coefficients. The asterisks *, **, and *** indicate the significance at the 
10%, 5%, and 1% level, respectively. 

  Model 

Risk Premia (1) (2) (3) (4) 

  Up Market 

Diffusion Beta       0.014** 

        (0.006) 

Jump Beta 0.005** 0.008*** 0.005** 0.004* 

  (0.002) (0.002) (0.002) (0.002) 

Size     -0.498 -0.063 

      (0.544) (0.657) 

BM     0.012* 0.014** 

      (0.007) (0.006) 

Tier 1 Risk-Based Capital Ratio -0.002*   -0.001 -0.001 

  (0.001)   (0.001) (0.001) 

Market-valued Capital Ratio   0.043 -0.059 -0.081* 

    (0.036) (0.047) (0.044) 

Profitability -0.046*** -0.031*** -0.050*** -0.050*** 

  (0.013) (0.007) (0.012) (0.012) 

Leverage -0.089 0.004 0.071 0.022 

  (0.054) (0.040) (0.099) (0.106) 

  Down Market 

Diffusion Beta       -0.010* 

        (0.006) 

Jump Beta -0.004 -0.009*** -0.003 -0.002 

  (0.003) (0.002) (0.004) (0.004) 

Size     0.819 0.517 

      (0.553) (0.526) 

BM     -0.029*** -0.030*** 

      (0.006) (0.006) 

Tier 1 Risk-Based Capital Ratio 0.001   0.001 0.001 

  (0.001)   (0.001) (0.001) 

Market-valued Capital Ratio   0.109** 0.161*** 0.178*** 

    (0.048) (0.045) (0.044) 

Profitability 0.016 0.002 0.027*** 0.027*** 

  (0.010) (0.009) (0.009) (0.010) 

Leverage -0.228*** -0.089** -0.236** -0.185* 

  (0.054) (0.039) (0.105) (0.106) 

Cons 0.153*** 0.043 0.059 0.049 
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  (0.052) (0.037) (0.070) (0.072) 

R-squared 0.58 0.56 0.59 0.59 

 

Table 17: Ex-ante Risk-Return trade-off for Individual Banks during up and down 
markets 
This table uses ex-ante measures of expected returns (instead of realized returns) to examine the relation 
between bank betas and bank stock returns in up and down markets for individual stocks over the whole 
sample period. The sample consists of 47 banks in Japan that are constitutes of Nikki 225 index over the 
period of 2001-2012. Clustered Standard errors are displayed in parentheses below the coefficients. The 
asterisks *, **, and *** indicate the significance at the 10%, 5%, and 1% level, respectively. 

  Model 

Risk Premia (1) (2) 

  Up Market 

Diffusion Beta 0.009** 0.005 

  (0.004) (0.006) 

Jump Beta 0.005*** 0.008*** 

  (0.002) (0.002) 

Size 
 

0.124 

  
 

(0.293) 

BM  -0.015** 

   (0.007) 

  Down Market 

Diffusion Beta -0.006 -0.013*** 

  (0.005) (0.005) 

Jump Beta -0.006** -0.002 

  (0.003) (0.003) 

Size  0.267 

   (0.293) 

BM 
 

-0.0167*** 

  
 

(0.005) 

Cons -0.002 -0.023 

  (0.002) (0.036) 

R-squared 0.02 0.03 

 

Table 18: Relationship between jump betas and liquidity 
This table reports correlations between jump betas and liquidity. We investigate whether information 
embedded in jump betas is different from that in a liquidity proxy. As proxies for liquidity, we use the 
monthly trading volume, and monthly realized variances. The column denoted by “Full sample period" 
provides the correlations during the beta estimation period (January 2001 to December 2012), the column 
“Pre-crisis" shows those during the pre-crisis period, the column “Crisis" shows those during the pre-crisis 
period, and the column “Post-crisis" reports those during the expansion period.  

Liquidity Full Sample period Pre-crisis  Crisis  Post-crisis 

Volume 0.023 0.024 0.112 0.284 

Variance 0.070 0.134 -0.070 -0.004 
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Figure 1: Intraday returns for the Nikkei 225 index at 5 minute frequency for 2001 

through 2012.  
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Figure 2: Realized Volatilities, Bipower Variations and Jumps  
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Figure 3: Cross-section monthly mean Betas for Continuous and Jump months 
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Figure 4: Time series plots of betas 
The figure displays the time series of betas for equally weighted beta-sorted quintiles portfolios. Panel A 
shows the result for the standard beta sorted portfolios, Panel B the diffusion beta sorted portfolios and 
Panel C the jump beta sorted portfolios. 
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Panel (B): Diffusion beta 
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Panel (C): Jump beta 
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