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Abstract

The growing disintegration between the natural gas and oil prices, together

with shale revolution and market financialization, lead to continued fundamental

changes in the natural gas markets. To capture these structural changes, this paper

considers a wide set of highly flexible time-varying parameter models to evaluate

the out-of-sample forecasting performance of the natural gas spot prices across the

US, European and Japanese markets. The results show that for both Japan and

EU markets, the best forecasting performance is found when the model allows for

drastic changes in the conditional mean and gradual changes in the conditional

volatility. For the US market, however, no model performs systematically better

than the simple autoregressive model. Full sample estimation results further con-

firm that allowing t-distributed error is important in modelling the natural gas

prices, especially for EU markets.
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1 Introduction

For many years, the price of natural gas is generally considered to be indexed to the

international price of crude oil, often referred to oil indexation. Even today, oil indexation

has a dominant role in the Asian natural gas market. However, numerous recent studies

have revealed that oil indexation has started to lose its foundation and the two prices

have been decoupled (Stern, 2014; Shi and Variam, 2017; Batten et al., 2017; Zhang and

Ji, 2018; Zhang et al., 2018a). The instability in the crude oil-natural gas price linkage

reflects dramatic changes in the global energy market. Technological development, such

as the extraction of shale gas in the US, along with the increasing financializaion in

natural gas markets, are seen as key factors that alter the world energy landscape (Creti

et al., 2015; Caporin and Fontini, 2017; Zhang et al., 2018a; Wang et al., 2019).
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Figure 1: Crude oil and natural gas prices

Note: The figure plots the nominal spot price of crude oil and US, EU, Japan natural gas spot

prices from 1992:1 to 2018:5, normalize to 1 in 1992:1. Source: World Bank Commodity Price

Data (The Pink Sheet).

As clearly shown in Figure 1, the price of crude oil and natural gas have greatly de-
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viated. This emergent phenomenon suggests that oil and gas would not share the same

fundamentals and thus calls for more studies that explicitly treat the price of natural gas

independently from the price of crude oil. The figure also shows that natural gas prices

in three major markets, namely the US, EU and Japanese market, have widely diverged.

Unlike crude oil, which has a global market, the natural gas markets are geographically

segmented and the pricing mechanisms across different regions are significantly distin-

guished. More precisely, US gas prices are set through gas-on-gas competition at the

Henry Hub, whereas gas prices in Asia are mostly based on oil indexation. The Euro-

pean market has been in the process of liberalization and thus gas prices in continental

European are mixed-hub prices as well as oil indexation. From a modelling perspec-

tive, the strong regional characteristics of these markets also require a more sophisticated

model that is capable of capturing the distinct behaviour of natural gas prices in these

regions.

The aim of this paper is to evaluate the out-of-sample forecasting performance for

natural gas spot prices across the US, European and Japanese natural gas market. In

particular, we evaluate the predictive abilities to a set of highly flexible time series models

that enable to capture the distinct characteristics of gas prices in these three regions. We

contribute to the current literature by augmenting the standard autoregressive model with

different features. Briefly, we consider three wide classes. The first class of models is the

time-varying parameters with stochastic volatilities (TVPSV) models. The main feature

of these models is to be able to capture structural instability in time series but allows

the model parameters to be changing gradually over time (Koop and Potter, 2007; Wang

et al., 2017; Wiggins and Etienne, 2017; Balcilar and Ozdemir, 2019). The second class of

models is the Markov switching (MS) models. Different from the first class that assumes

the model parameters to change gradually, parameters in the MS models are allowed

to change drastically (Fong and See, 2002; Kosater and Mosler, 2006; Alizadeh et al.,

2008; Vo, 2009; Sanzo, 2018). While these two classes of models are both able to capture

the characteristic of structural instability which may exist in the natural gas markets,

they restrict only one type of time-variation and model uncertainty. In order words,

conventional model with its parameters changing over time only allows all parameters to

vary either gradually or drastically. We therefore develop a class of hybrid time-varying

parameters models that enable flexible time-varying characteristic in capturing different

type of dynamics in model parameters. To be specific, these proposed hybrid models

allow for a combination of gradual changes in mean and abrupt changes in variance, and

vice versa. We then evaluate the forecasting performance of these models for the three

natural gas markets from one to nine months ahead.

Our analysis is related to previous studies that attempt to accommodate fundamental
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changes in the natural gas markets. Apergis et al. (2015), for example, examine the coin-

tergration between city-gate and residential prices and find structutural breaks relating

to deregulation in the early 1990s. In line with these findings, Hou and Nguyen (2018)

employ a Bayesian model comparision method and determine four regimes existing in

the US natural gas market. Regime shifts in the US market are often associated with

the periods of important regulatory reforms in the US natural gas market. Recently,

the US shale gas revolution is detected as a major factor causing the structural changes

(Wakamatsu and Aruga, 2013; Arora and Lieskovsky, 2014). Indeed, Wakamatsu and

Aruga (2013) find that the US shale gas revolution not only has an impact on the domes-

tic market but also changes on the relationship between the US and Japanese markets.

The market linkage existing between the two markets disappeared since the shale gas

revolution. Structural breaks and time variance manners are also found in the European

market Bastianin et al. (2019).

To capture a more nuanced picture of the structural shifts, recent studies have also

attempted to include different sources of time variation and model uncertainty to the

natural gas markets. Accordingly, to accomodate structural breaks in both the coeffi-

cients and volatility, Hailemariam and Smyth (2019) apply a structural heterogeneous

autoregressive VAR model. Along the same vein, Wiggins and Etienne (2017) utilize a

VAR model that allows for both time-varying parameters and stochastic volatility, while

Hou and Nguyen (2018) assume regime switching existing in some periods in the market.

Despite this fact, no detailed analysis of the forecasting performances these similar models

have been applied in the natural gas markets. Most of studies being conducted for natural

gas price forecasting rely heavily on the artificial neural network approaches (MacAvoy

and Moshkin, 2000; Buchananan et al., 2001; Nguyen and Nabney, 2010; Abrishami and

Varahrami, 2011; Azadeh et al., 2012; Busse et al., 2012; Salehnia et al., 2013; Mishra and

Smyth, 2016; Čeperić et al., 2017; Su et al., 2019). Therefore, the existence of structural

instability, which is documented in more recent studies, is likely to be overlooked in these

studies. Ignoring this important feature is often recognized as a leading cause of forecast

failure (Carriero et al., 2019).

In general, our results show that time-varying parameter models perform better than

static models in terms of out-of-sample forecasting. Moreover, allowing different time

varying dynamics of the model parameters is influential on the natural gas price forecast.

In particular, for both Japan and EU, the best forecasting performance is found when al-

lowing for drastic changes in the conditional mean and gradual changes in the conditional

volatility. For the US, however, no model performs systematically better than the simple

autoregressive model. In addition, allowing t-distributed error is important in modelling

the natural gas prices across the three markets, especially for EU markets.
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The rest of this paper is organized as follows. In section 2, a class of time series

models with different time varying dynamics are presented. In section 3, a description

of the data and prior is given. Section 4 presents the forecasting metrics and results. In

section 5, the full sample estimation results of the best performing model are discussed

and Section 6 concludes the paper.

2 Models

In this section we present various models with different types of time-varying parameters.

Several studies in the forecasting literature have shown that simple univariate time series

model typically outperforms a multivariate or far more complicated model in forecast

perspective (Atkeson et al., 2001; Stock and Watson, 2007; Chan, 2013). Furthermore,

assuming an autoregressive conditional mean has been widely used as a benchmark and

shown to be a competent setup in forecasting literature (Clark and Ravazzolo, 2015). In

this paper, we consider the following autoregressive model and its various extension

yt = β0 + β1yt−1 + . . .+ βpyt−p + εyt , εyt ∼ N (0, λtσ
2), (1)

where N (·, ·) denotes the Gaussian distribution and λt is a scale-mixing parameter which

follows a inverse-gamma distribution IG(ν
2
, ν
2
). It can be shown that the marginal distri-

bution of εt follows a t-distribution Geweke (1993). Note that by assuming λt = . . . =

λT = 1, it recovers the standard AR model with normal innovation. It is convenient to

rewrite the AR as

yt = xtβ + εyt , N (0, λtσ
2),

where xt = (1, yt−1, . . . , yt−p) and β = (β0, β1, . . . , βp)
′. Many studies have shown that

allowing model parameters to be changing over time can be beneficial for improving fore-

cast accuracy. Two classes of models are often used to capture the parameters instability.

The first class of models is the time-varying parameters with stochastic volatility models.

The second set of models is the Markov switching models. Both classes of models are

widely used in modelling macroeconomic and financial variables. Recently, these mod-

els have also been successfully applied in modelling energy variables for improving the

in-sample fit and out-of-sample forecasting.
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2.1 Time-Varying Parameter with Stochastic Volatility Models

In this section, we discuss the time-varying parameters with stochastic volatility (TVPSV)

models, which can be specified as

yt = xtβt + εyt , εyt ∼ N (0, λte
ht), (2)

βt = βt−1 + εβt , εβt ∼ N (0,Σβ), (3)

ht = ht−1 + εht , εht ∼ N (0, σ2
h), (4)

where Σβ = diag(σ2
β,0, . . . , σ

2
β,p), and the initial condition of the state parameters are

assumed to be β1 ∼ N (β0,Vβ) and h1 ∼ N (0, Vh).

It is well-konwn in the literature that the TVPSV model implicitly assumes that the

change of the model parameters in subsequent period of time is restricted in a small

magnitude. This can be seen from the equations (3) and (4) in which the variances of

the innovation, σ2
β,0, . . . , σ

2
β,p and σ2

h are often assumed to be small. In other words, the

TVPSV model can be interpreted as a structural break model where breaks occur in each

period of time with small magnitudes.

2.2 Markov Switching Models

We discuss a class of Markov Switching models (MS) in this section. A general framework

of Markov Switching models we consider in this paper can expressed as

yt = xtβst + εyt , εyt ∼ N (0, λtσ
2
zt), (5)

Pr(st = j|st−1 = i) = psij, (6)

Pr(zt = l|zt−1 = k) = pzkl, (7)

where i, j = 1, . . . ,Ms and k, l = 1, . . . ,Mz. The Ms and Mz are the numbers of regimes in

the AR coefficients and volatilities respectively, which are determined prior to estimation.

The regime indicator st and zt are assumed to follow independent Markov processes that

govern the dynamics of the conditional mean coefficient and the variance at time t. The

main difference between the TVPSV and the MS models is that only a small number of

structural breaks are assumed to occur in the sample and the magnitude of change in the

model parameters when a break occurs is not restricted.

2.3 Hybrid Models

Both TVPSV and MS models have different implicit assumptions on the number of break

and the magnitude of change in the model parameters when a break occurs. Researcher
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often select one of these models in their empirical studies based on the data feature or

theoretical consideration. In this section, we propose two hybrid models in which the

evolutions of the AR coefficients and volatilities possess different types of time-varying

dynamics. To be specific, the first hybrid model we consider is given by

yt = xtβt + εyt , εyt ∼ N (0, λtσ
2
zt), (8)

βt = βt−1 + εβt , εβt ∼ N (0,Σβ), (9)

Pr(zt = j|zt−1 = i) = pzij, i, j = 1, . . . ,Mz. (10)

We refer this model as ARt-TVPMS. The second hybrid model proposed in this paper is

yt = xtβst + εyt , εyt ∼ N (0, λte
ht), (11)

ht = ht−1 + εht , εht ∼ N (0, σ2
h), (12)

Pr(st = j|st−1 = i) = psij, i, j = 1, . . . ,Ms. (13)

We refer this model as ARt-MSSV. It can be seen that the time-variation in the AR

coefficients and the volatilities for the ARt-TVPMS and the ARt-MSSV have different

implicit assumptions. The main purpose of this paper is to investigate if allowing var-

ious types of time-varying dynamics in the model parameters improve the natural gas

forecasting performance.

All models are estimated using Markov chain Monte Carlo method (MCMC). The

posterior sampler for models with constant parameters is standard. For models with

time-varying parameters with stochastic volatility, we sample the log volatilities using

the auxiliary mixture sampler of Kim et al. (1998). The time-varying AR coefficients

are sampled using the precision sampler developed in Chan and Jeliazkov (2009). For

models with parameters driven by Markov switching processes, the regime indicators

are sampled by applying the method proposed by Chib (1996). Lastly, the degree of

freedom parameter ν for t-distributed models can be sampled by an independence-chain

Metropolis-Hastings step proposed by Chan et al. (2014). The estimation results in our

empirical studies are all based on 10000 posterior samples obtained after a burn-in period

of 5000.

To have a complete investigation of the contribution of various time-varying dynamics

on natural gas forecast, we consider a variety of the TVPSV and MS models. In addition,

we also consider models with Gaussian distributed error term to shed light on whether

allowing heavy-tailed distributed error term produces forecasting gains. We summarize

all the models in our out-of-sample forecasting exercise in Table 1.
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Table 1: A list of models

Benchmark model

AR ARt with λ1 = . . . = λT = 1;

Time-Varying Parameter with Stochastic Volatility Models

ARt defined in equation (1).

AR-SV ARt-SV with λ1 = . . . = λT = 1.

ARt-SV ARt-TVPSV with β1 = . . . = βT .

AR-TVP ARt-TVP with λ1 = . . . = λT = 1.

ARt-TVP ARt-TVPSV with h1 = . . . = hT .

AR-TVPSV ARt-TVPSV with λ1 = . . . = λT = 1.

ARt-TVPSV defined in equations (2) - (4).

Markov Switching Models

AR-MS ARt-MS with λ1 = . . . = λT = 1.

ARt-MS ARt-DMS with st = zt.

AR-DMS ARt-DMS with λ1 = . . . = λT = 1.

ARt-DMS defined in equation (5) - (7).

AR-MSC ARt-MSC with λ1 = . . . = λT = 1.

ARt-MSC ARt-DMS with s1 = . . . = sT .

AR-CMS ARt-CMS with λ1 = . . . = λT = 1.

ARt-CMS ARt-DMS with z1 = . . . = zT .

Hybrid Models

AR-TVPMS ARt-TVPMS with λ1 = . . . = λT = 1.

ARt-TVPMS defined in equations (8) - (10).

AR-MSSV ARt-MSSV with λ1 = . . . = λT = 1.

ARt-MSSV defined in equations (11) - (13).

3 Data and Prior

3.1 Data

Natural gas prices used in this paper were collected from the World Bank commodity

price data, or the Pink Sheet, as in Zhang et al. (2018b) and Zhang and Ji (2018). For

the US, the Pink Sheet reports the monthly data from 1976:06 but for the EU and Japan

market the data is in yearly frequency until 1992:01, as shown in Figure 2. For this

reason, the sample period considered in this paper starts January 1992 and ends in May

2019. According to the Pink Sheet, the price of natural gas is defined differently for
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each market. The US gas price is the spot prices trading in the Henry Hub Louisiana.

The European gas price is the average import border price and a spot price component

(excluding UK between June 2000 and March 2010). For Japan, the Pink Sheet reports

the imported LNG prices with the most recent two-month averages.
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Figure 2: Natural gas prices

Note: The figure plots the monthly percentage nominal gas prices considered in this study. The

dashed vertical (red) line indicates the starting date of our forecasting evaluation period, from

1995:01 to 2019:05. The full sample spans from 1992:01 to 2019:05.

3.2 Prior

To complete the model specification, we give the details of the prior on the model param-

eters in this section. We assume same priors for parameters common across models. To

be specific, the priors for the AR coefficients and the variance for models with constant

parameters are given by

β ∼ N (β0,Vβ), σ2 ∼ IG(νy, Sy).
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The variances of the disturbance terms of the time-varying parameters and the log

volatilies are assumed to be independently distributed as

σ2
h ∼ IG(νh, Sh), σ2

β,i ∼ IG(νi, Si), for i = 0, 1, . . . , p.

For the regime transition probability, we assume

(psi1, . . . , p
s
iMs

) ∼ D(αsi1, . . . , α
s
iMs

), for i = 1, . . . ,Ms,

(pzj1, . . . , p
z
jMz

) ∼ D(αzj1, . . . , α
z
jMz

), for j = 1, . . . ,Mz,

where D(α1, . . . , αM) denotes the Dirichlet distribution with concentration parameters

(α1, . . . , αM). Lastly, we assume the following independent prior for model parameters of

the MS model:

βi ∼ N (βMS,VMS), for i = 1, . . . ,Ms,

σ2
j ∼ IG(νMS, SMS), for j = 1, . . . ,Mz.

In particular, we set the hyper-parameters to be β0 = βMS = 0 and Vβ = VMS = Ip+1.

For the degree of freedom parameters, we set νy = νh = 10 and νi = 10 for i = 0, 1, . . . , p.

The scale parameters are set to result in the prior means of σ2, σ2
h and σ2

β,i to be 1, 0.12

and 0.012 respectively. For the concentration parameters, we set

(αsi1, . . . , α
s
iMs

)′ = 1Ms + 100eMs
i , for i = 1, . . . ,Ms,

(αzj1, . . . , α
z
jMz

)′ = 1Mz + 100eMz
j , for j = 1, . . . ,Mz,

where 1M denotes aM×1 vector with its entries equal to 1, and eMl denote the l-th column

of the identity matrix with dimension M . Lastly, the degree of freedom parameters for

the t-distributed models ν is assumed to follow a exponential prior with mean 5.

4 Forecasting

This section performs a recursive out-of-sample forecasting exercise to evaluate the fore-

casting performance of the models listed in Table 1. We evaluate the iterated m-step-

ahead forecasts of each model with m = 1, 3, 6, 9. The full sample used for each country

covers time period from 1992M1 to 2019M5 and our forecasting evaluation period starts

from 1995M1 to 2019M5.

4.1 Forecasting Metrics

Let yot+m be the observed value of yt+m. We compute the m-step-ahead predictive pos-

terior median ŷt+m as the point forecast for a given model. The mean absolute forecast
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error (MAFE) is used to measure the accuracy of the point forecast of a model, which is

defined as

MAFE =
1

T −m− t0 + 1

T−m∑
t=t0

∣∣yot+m − ŷt+m∣∣ .
For evaluating the performance of density forecasts, we use the average log-predictive

likelihoods (ALPL) which is defined as

ALPL =
1

T −m− t0 + 1

T−m∑
t=t0

log pt+m(yt+m = yot+m|yo1, . . . , yot ),

where pt+m denotes m-step-ahead predictive density function. The log-predictive likeli-

hood is often used to compare forecast performance of models in the Bayesian framework

since there is a close connection between the predictive likelihood and the marginal likeli-

hood. More discussions about the log-predictive likelihoods can be found in Geweke and

Amisano (2011).

To facilitate comparison, we report the relative scores to the AR benchmark model.

To be specific, we report the ratios of MAFEs of a given model to the benchmark. Hence

values less than unity indicate better point forecast performance than the benchmark. For

density forecasts, we report the difference of ALPLs of a given models to the benchmark.

Thus positive values indicate better density forecast performance than the benchmark.

4.2 Forecasting Results

The forecasting results are presented in Table 2 - Table 4. The results for the AR

benchmark is the raw scores. The relative scores are reported for other models.

Our results show that no models can consistently outperforms the AR benchmark in

term of point and density forecasts for the US natural gas price forecasting. Although

models allowing t-distributed disturbances and stochastic volatility tend to slightly im-

prove the density forecast accuracy over their Gaussian counterparts, the improvements

do not seem to be significant. For example, the largest difference of the ALPL among

all forecasting horizon between ARt-SV and the AR benchmark is only 0.08. It is inter-

esting that models with time-varying parameters produce little gain in forecast accuracy.

In general the MS models perform relatively poor compared with TVPSV models, which

suggests that the time-varying dynamic of the model parameters in modelling US gas

price market is likely to be changing gradually instead of drastically.

For forecasting the natural gas prices of EU, model allowing its parameters to be

changing over time is likely to generate more accurate forecasts, especially for density

forecast. Moreover, the forecasting performance can be further improved by assuming an
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t-distributed innovations. It is also evident from our results that the types of time-varying

dynamics for modelling the conditional mean and variance are crucial for EU natural gas

prices forecast. For example, the AR-SV consistently produces better density forecasts

than the AR-CMS among all forecast horizons, which indicates that it is beneficial in

improving forecasting performance by assuming the variations in the variances to change

gradually instead of drastically. However, the overall best model is the ARt-MSSV,

highlighting the empirical relevance of allowing different time-varying dynamics to govern

the conditional means and variances.

In the perspective of forecasting the Japan natural gas prices, models with differ-

ent time-varying dynamics tend to compare more favourably to the AR benchmark. In

particular, the ARt-SV and ARt-MSSV perform relatively better than other models in

density forecast. For the point forecast, no model consistently produce competent per-

formance. Allowing heavy-tailed distributed disturbances have been again shown to be

a solid practical choice. This can be seen that models with heavy-tailed disturbances

often perform better than their counterparts with Guassian innovations. It is interesting

that the time-varying dynamics governing the AR coefficient does not seem to play an

important role in improving forecasting accuracy for Japan natural gas prices.
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Table 2: Forecast performance relative to the standard AR for US.

relative MAFE relative ALPL

m=1 m=3 m=6 m=9 m=1 m=3 m=6 m=9

AR 15.31 26.64 33.80 35.96 −4.46 −4.98 −5.25 −5.35

AR-SV 1.00 0.99 0.99 0.99 0.03 0.02 0.04 0.07

ARt 1.00 0.99 0.97 0.96 −0.06 −0.03 −0.01 0.02

ARt-SV 1.00 0.99 0.98 0.98 0.03 0.02 0.05 0.08

AR-TVP 1.01 1.04 1.07 1.10 0.00 −0.02 −0.04 −0.06

ARt-TVP 1.01 1.06 1.09 1.12 −0.06 −0.07 −0.10 −0.11

AR-TVPSV 1.01 1.03 1.06 1.09 0.02 −0.01 −0.01 0.00

ARt-TVPSV 1.01 1.03 1.06 1.09 0.02 0.00 0.00 0.00

AR-MS 1.04 1.01 1.00 1.00 −0.03 −0.02 0.01 0.01

ARt-MS 1.01 1.05 1.20 1.61 −0.07 −0.05 −0.05 −0.02

AR-DMS 1.05 1.02 1.04 1.07 −0.01 −0.02 0.00 0.01

ARt-DMS 1.05 1.10 1.31 1.87 −0.09 −0.09 −0.12 −0.13

AR-MSC 1.05 1.02 1.02 1.03 −0.01 −0.02 −0.03 −0.02

ARt-MSC 1.08 1.05 1.03 1.05 −0.05 −0.06 −0.11 −0.12

AR-CMS 1.00 1.00 1.00 1.00 −0.01 −0.01 0.01 0.00

ARt-CMS 1.00 0.99 0.98 0.97 −0.07 −0.04 −0.01 0.01

AR-TVPMS 1.01 1.04 1.07 1.10 −0.01 −0.02 −0.03 −0.06

ARt-TVPMS 1.01 1.06 1.09 1.12 −0.07 −0.08 −0.10 −0.12

AR-MSSV 1.00 0.98 0.99 1.00 0.02 0.02 0.04 0.06

ARt-MSSV 1.01 0.99 1.00 1.01 0.03 0.01 0.01 0.02

Note: Results for AR benchmark are actual values and the results for the remaining models are

reported relative to the benchmark. Values in gray cells indicate the best relative MAFE and

ALPL.
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Table 3: Forecast performance relative to the standard AR for EU.

relative MAFE relative ALPL

m=1 m=3 m=6 m=9 m=1 m=3 m=6 m=9

AR 5.43 11.34 19.02 23.97 −3.61 −4.18 −4.90 −5.57

AR-SV 0.98 1.01 1.02 1.01 0.18 0.08 0.14 0.38

ARt 0.97 1.03 1.03 1.04 0.20 −0.11 0.09 0.55

ARt-SV 0.97 1.03 1.04 1.03 0.30 −0.01 0.15 0.59

AR-TVP 1.04 1.04 1.08 1.13 −0.01 −0.01 −0.04 −0.02

ARt-TVP 0.99 1.05 1.10 1.13 0.19 −0.08 0.11 0.52

AR-TVPSV 1.01 1.02 1.06 1.11 0.17 0.05 0.10 0.31

ARt-TVPSV 0.99 1.04 1.08 1.11 0.28 −0.01 0.16 0.55

AR-MS 1.05 1.11 1.40 3.06 0.09 0.06 0.19 0.55

ARt-MS 1.00 1.04 1.05 1.05 0.20 −0.10 0.10 0.54

AR-DMS 1.09 1.17 1.50 3.25 0.11 0.03 0.15 0.50

ARt-DMS 1.01 1.05 1.06 1.06 0.20 −0.09 0.11 0.57

AR-MSC 1.20 1.35 2.04 5.20 0.00 −0.07 0.11 0.50

ARt-MSC 0.99 1.03 1.03 1.02 0.21 −0.08 0.12 0.57

AR-CMS 0.99 1.00 1.02 1.03 0.11 0.01 −0.08 −0.01

ARt-CMS 0.97 1.03 1.04 1.04 0.21 −0.10 0.09 0.54

AR-TVPMS 1.02 1.03 1.08 1.14 0.11 0.00 0.03 0.11

ARt-TVPMS 0.99 1.05 1.09 1.13 0.20 −0.08 0.10 0.52

AR-MSSV 0.99 1.01 1.00 1.00 0.17 0.09 0.23 0.59

ARt-MSSV 0.98 1.03 1.03 1.02 0.29 0.01 0.18 0.61

Note: Results for AR benchmark are actual values and the results for the remaining models are

reported relative to the benchmark. Values in gray cells indicate the best relative MAFE and

ALPL.
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Table 4: Forecast performance relative to the standard AR for Japan.

relative MAFE relative ALPL

m=1 m=3 m=6 m=9 m=1 m=3 m=6 m=9

AR 3.80 8.80 15.17 19.44 −3.11 −3.93 −4.81 −5.26

AR-SV 1.00 0.99 0.99 0.98 0.11 0.14 0.39 0.56

ARt 1.00 1.01 1.00 1.00 0.02 0.03 0.20 0.27

ARt-SV 1.00 0.99 0.99 0.98 0.11 0.13 0.38 0.55

AR-TVP 1.04 1.08 1.14 1.16 0.00 0.01 0.03 −0.01

ARt-TVP 1.04 1.09 1.16 1.20 0.02 −0.02 0.12 0.22

AR-TVPSV 1.02 1.05 1.09 1.10 0.10 0.09 0.30 0.42

ARt-TVPSV 1.03 1.05 1.09 1.10 0.10 0.08 0.29 0.42

AR-MS 1.01 1.03 1.09 1.19 −0.01 0.08 0.30 0.37

ARt-MS 1.01 1.02 1.03 1.03 0.03 0.07 0.30 0.39

AR-DMS 1.04 1.06 1.11 1.18 −0.01 0.00 0.19 0.30

ARt-DMS 1.03 1.06 1.10 1.14 0.01 0.00 0.21 0.34

AR-MSC 1.03 1.02 1.02 1.00 0.00 0.03 0.25 0.44

ARt-MSC 1.02 1.00 1.00 0.99 0.02 0.05 0.29 0.45

AR-CMS 1.00 1.00 1.00 1.00 0.00 0.01 −0.07 0.05

ARt-CMS 1.00 1.01 1.00 1.01 0.01 0.02 0.23 0.30

AR-TVPMS 1.04 1.08 1.14 1.16 0.00 0.01 0.05 −0.02

ARt-TVPMS 1.04 1.09 1.16 1.19 0.01 −0.01 0.10 0.14

AR-MSSV 1.00 1.00 0.99 0.97 0.11 0.13 0.37 0.53

ARt-MSSV 0.99 0.99 0.98 0.96 0.10 0.14 0.40 0.58

Note: Results for AR benchmark are actual values and the results for the remaining models are

reported relative to the benchmark. Values in gray cells indicate the best relative MAFE and

ALPL.

5 Full Sample Estimation Results

As shown in the previous section, the ARt-MSSV has a relatively good forecasting per-

formance compared with the other models. We then estimate the ARt-MSSV model on

the full sample of different natural gas series in US, EU and Japan. Figure 3 plots the

estimated posterior distributions of ν. It is evident that allowing a t-distributed error

seems to be important in modelling the natural gas prices for the US and Japan. While

the posterior distribution of ν for the EU market data is centered between 1 and 3 the cor-
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responding for the US and Japan are wider, concentrated between 5 and 20 or more. The

results indicate specifying a heavy-tailed distribution is favored by the data, especially

for EU markets.

Figure 3: Estimated posterior distributions of ν.

Figure 4 plots the estimated posterior means and the 90% credible intervals for the

standard error, e
ht
2 . For the U.S. market, the variance of natural gas price has been

steadily increasing since the Decontrol Act 1989 and fluctuates greatly for the first decade

of this century. Interestingly, the variance becomes much more stable after 2010. A pos-

sible explanation is that the shale gas has gradually become a major source of natural gas

supply in the U.S. and this makes the U.S. market much less susceptible to any supply

shocks to the market.1 For the EU market, the variance of natural gas price stays rela-

tively low and stable until 2014. After the Russo-Ukrainian War broke out in 2014, the

variance has been increasing steadily, which is likely the combined result of both EU’s

reliance on Russian natural gas and the increasing tension between the NATO member

states and Russia. For the Japan market, the variance also stays relatively low and stable

but increases drastically around 2011 and 2016. These drastic increases in volatility are

likely the results of the 2011 Fukushima accident and 2016 Fukushima earthquake. After

the 2011 Fukushima accident and subsequent nuclear shutdown, Japan’s LNG demand

quickly increased by 30% despite a near doubling in price. The 2016 Fukushima earth-

quake, although not causing any major damage to the Fukushima nuclear power station,

likely pushed back the restarts of the reactors. Overall, the U.S. market is evidently much

more volatile compared with the EU and Japan markets.

1In 2000 shale gas provided only 1% of the U.S. natural gas production and by 2010 it was over 20%.
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Figure 4: Estimated posterior distributions of e
ht
2 .
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Figure 5: Estimated posterior means and 90% credible intervals of the AR intercept (left),

largest AR root (middle) and the sum of AR coefficients (right) for the US.
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Figure 6: Estimated posterior means and 90% credible intervals of the AR intercept (left),

largest AR root (middle) and the sum of AR coefficients (right) for the EU.
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Figure 7: Estimated posterior means and 90% credible intervals of the AR intercept (left),

largest AR root (middle) and the sum of AR coefficients (right) for the JAN.

Figure 5 - Figure 7 display the estimated posterior means and 90% credible intervals

for (a) the AR intercept, (b) the largest AR root (LAR), and (c) the sum of the AR co-

efficients. The two latter serve as our measures of persistence. We see that the intercepts

for all three markets stay relatively low and constant with a wide credible interval. Both

persistence measures for the U.S. Market stay rather constant, but drop significantly

after 2017. Before the drop, the sum of AR coefficients is about 1.2, and the LAR is

around 0.84. For the EU market, both persistence measures stay rather constant with

two dips around 1996-1997 and 2012-2014. The sum of AR coefficients is about 1.1, and

the LAR is a little above 0.95. For the Japan market, both persistence measures stay

rather constant with one small bump between 2004 and 2008. The sum of AR coefficients

is about 1.1, and the LAR is around 0.86.

6 Conclusion

In this paper, we evaluate the out-of-sample forecasting performance of a wide class of

time series models for natural gas prices across the US, European and Japanese natural

gas markets. To fully capture the possible time-varying dynamics in mean and variance,

in addition to the traditional TVPSV and MS models, we propose a class of hybrid

TVPSV-MS models that allow for a combination of gradual changes in mean and abrupt

changes in variance, and vice versa. We also allow for heavy-tailed distributed disturbance

in our models, for its ability in capturing the occurrence of extreme prices compared to

the normal distribution (Chang, 2012).

The results shed light on the fundamentals of the three natural gas markets. For both

Japan and EU, time-varying parameter models perform better than static models. In

particular, the best forecasting performance is found when allowing for drastic changes

in the conditional mean and gradual changes in the conditional volatility. For the US,
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however, no model performs systematically better than the simple AR model. In addition,

allowing t-distributed error is important in modelling the natural gas prices, especially

for EU markets. The results further suggest that the EU and Japan markets are similar

in terms of the fundamental time-varying dynamics, even though the European market

has been in the process of disintegrating from the oil market. The US market, where

gas prices are set through gas-on-gas competition at the Henry Hub and not oil-indexed,

exhibits completely different time-varying dynamics than the EU and Japan markets.
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