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Abstract

Forecasting intraday trading volume is an important problem in economics and finance. One

influential approach to achieving this objective is the non-linear Component Multiplicative

Error Model (CMEM) that captures time series dependence and intraday periodicity in

volume. While the model is well suited to dealing with a non-negative time series, it is

relatively cumbersome to implement. This paper proposes a system of linear equations,

that is estimated using ordinary least squares, and provides at least as good a forecasting

performance as that of the CMEM. This linear specification can easily be applied to model

any time series that exhibits diurnal behaviour.
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1 Introduction

The Volume Weighted Average Price (VWAP) trading strategy (Berkowitz et al., 1988, Madha-

van, 2002, Bialkowski et al., 2008) is a popular strategy for improving trade execution, one that

requires accurate predictions of intraday volume. Brownlees et al. (2011) propose a Component

Multiplicative Error Model (CMEM) for modeling and forecasting intraday trading volume that

is able to deal with both the persistence of and diurnal patterns in volume. They demonstrate

that the CMEM performs well when forecasing out-of-sample.

This paper demonstrates that an alternative approach to forecasting intraday volume, based on

simple system of linear equations, will perform as well, if not better, than the nonlinear CMEM

approach. This multiple equation approach captures both the diurnal periodic component and

an intraday dynamic component that are present in intra-day trading volume. The resultant

system has more parameters than a standard CMEM model and cannot guarantee that the

forecast will be positive, but it has the advantage that it can be estimated straightforwardly

by ordinary least squares. An empirical application demonstrates the out-of-sample forecasts

generated from the linear system are at least as good as the CMEM forecasts according to

VWAP criterion, and better than the CMEM forecasts when judged on the MSE criterion.

2 The models

Let each trading day, t ∈ {1, ..., T}, be divided into equally spaced intervals (or bins), i ∈

{1, ..., I} where in this application I = 78. Intraday trading volume on day t for bin i is then

denoted xt,i.

2.1 The CMEM model

The CMEM model (Brownlees et al., 2011) aims to model xt,i by means of three dynamic

features, a daily component, an intra-day periodic component and an intra-day dynamic com-

ponent. The three components of the CMEM are defined as follows.

(i) Intraday periodic component:

φi = exp
( I/2∑

k=1

[
γk cos

(2π
I
k(i− 1)

)
+ δk sin

(2π
I
k(i− 1)

)]
, (1)

with I = 78. Although the possible maximum number of terms in the expansion is k = 36,

only the first 12 frequencies are used in this application. The intraday periodic component

models the diurnality in intraday volume.

(ii) Daily periodic component:

ηt = α0 + α1ηt−1 + α2x
(η)
t−1 (2)
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where x
(η)
t is the standardized daily volume

x
(η)
t =

1

I

I∑

i=1

xt,i
φi µt,i

. (3)

The daily component encapsulates the level of the series.

(iii) Intraday dynamic component:

µt,i = β0 + β1µt,i−1 + β2x
(µ)
t,i−1, (4)

where x
(µ)
t,i is the standardized intraday volume

x
(µ)
t,i =

xt,i
φi ηt

. (5)

The identification restriction, β0 = 1−β1 −β2 is imposed in the estimation. The intraday

dynamic component takes care of any dynamic structure that is not periodic in nature.

The CMEM model is specified as

xt,i = ηt φi µt,i εt,i εt,i ∼ (1, σ2). (6)

The multiplicative error term, εt,i is assumed to be nonnegative. The parameters of the CMEM

are estimated by quasi-maximum likelihood estimation based on the assumption that the density

of the disturbances follows a gamma distribution as in Engle and Gallo (2006). The log likelihood

function at time t is given by

logLt = − log Γ(a) + a log(a) + (a− 1) log(xt,i)− a log(ηt φi µt,i)− a
( xt,i
ηt φi µt,i

)
, (7)

where a is the parameter of the gamma distribution. The estimation is performed in two steps.

In the first step, the Fourier parameters for the seasonal factors φi are estimated by ordinary

least squares regression. In the second step, conditional on the seasonal parameters obtained

from the first step, the unknown parameters αi, βi and a are estimated.

2.2 The multiple equation approach

Multiple equation time series models have enjoyed some popularity in the literature but their

influence has waned in recent years. Rather than trying to model the trajectory of time series

of trading volume, each period (or bin) of the day is treated as a separate forecasting problem

with its own equation (Peirson and Henley, 1994, Ramanathan et al., 1997, Espinoza et al.,

2005, Soares and Medeiros, 2008). In other words, the data are re-arranged so that a daily time

series is created for each of the 78 daily bins and a simple linear equation is used to model each

of these 78 time series. The major advantage of this approach is that the model remains linear

in parameters, so that ordinary least squares can be used to estimate the equations.
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Each equation has a simple linear structure which involves the first and fifth daily (total volume

for the day) lags of volume, xt−1 and xt−5, respectively, and the volume and disturbance term

from the immediately preceding bin, xt,i−1 and v̂t,i−1, respectively. The daily lags, xt−1 and

xt−5 are included to capture longer-term persistence in volume (akin to the daily component

in the CMEM) with the terms xt,i−1 and vt,i−1 used to capture intraday persistence. The first

bin of the day is different to the others because there is no information from an immediately

preceding bin on the same day. In this first bin, in place of xt,i−1 and vt,i−1, values from the final

bin on the preceding day t− 1 are used. This is in the same spirit as the intraday component

in the CMEM, µt,i which links trading days together. The equation for the first bin i = 1 takes

the form

xt,1 = θ10 + θ11xt−1 + θ12xt−5 + θi3xt−1,78 + θi4vt−1,78 + vt,1, (8)

where θ10 a is constant term. For the remaining bins, i = 2, . . . , 78, the linear equations are

specified as

xt,i = θi0 + θi1xt−1 + θi2xt−5 + θi3xt,i−1 + θi4vt,i−1 + vt,i. (9)

This structure offers a great deal in terms of flexibility. The set of intercepts deal with diurnal

pattern, differing θi1 and θi2 coefficients allow for different impacts across the trading day, and

θi3 allows for varying persistence during the trading day. The structure is simple but works

well for series with a strong diurnal structure.1 The series of intercepts θi0 pick up the diurnal

pattern in volume and control the unconditional level for each bin. A daily lags of volume

capture longer-term persistence present in daily trading volume. Where appropriate, intraday

autoregressive persistence is captured with the term xt,i−1 from the preceding bin, along with

error from the previous bin, v̂t,i−1.

The multiple equation model is estimated equation-by-equation using iterative ordinary least

squares (Spliid, 1983). Each equation is initially estimated ignoring the vt,i−1, i = 2, . . . , 78

terms and the regression residuals stored. The equations are then re-estimated including

v̂t,i−1, i = 2, . . . , 78 from the previous step as observed regressors. This process is then iterated

until convergence which is defined as the difference in parameter values in successive iterations

being less than a user supplied tolerance, in this case the square root of machine precision for

floating-point arithmetic. While the CMEM approach guarantees that volume forecasts will be

positive, this is not the case with multiple equation model. Even though theoretically speaking,

negative forecasts are possible, at no point during any of the empirical analysis have negative

forecasts been observed. In the context of volatility forecasting, the same issue arises. When

the standard HAR model of Corsi (2009) is applied to a raw realized volatility series, there is

no guarantee that the forecasts will be positive, however the risk of this occurring is negligible.

Bollerslev et al. (2016) propose an extended version of the HAR model which does produce a

very small number of negative forecasts. To mitigate this problem, they apply an ‘insanity filter’

1A similar multi-equation model was used by Clements et al. (2016) to predict electricity load and by Moisan
et al. (2018) to predict air-pollution concentrations and the linear approach is shown to outperform more complex
nonlinear forecasting models. In both of these studies, more complex sets of explanatory variables are required
than the current setting. Electricity load and air pollution exhibit a marked diurnal structure and also strong
seasonality, with a range of different exogenous climatic and environmental variables needing to be included.

4



to their forecasts if their models produced forecasts outside of the observed range for volatility.

A similar filter could be applied here should the situation demand it.

3 Empirical results

To compare forecast accuracy of CMEM and the mulitple equation linear system, the SPDR

ETF (SPY) which tracks the S&P500 equity index is used. A dataset contains intraday volumes

and transaction prices over a sample period from 5 January 2004 to 30 December 2016. The

frequency of the dataset is 5 minutes (78 bins within a day). A detailed discussion of the

empirical regularities of the SPY series is presented in Brownlees et al. (2011). The average

daily volume of the SPY series (top panel) together with the familiar U-shaped intra-day pattern

(bottom panel) are shown in Figure 1.

2006 2008 2010 2012 2014 2016
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0.5
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Average daily volume

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8
Average intraday volume

Figure 1: Average daily volume (top panel) and the diurnal pattern computed as the average
volume in 5 minute intervals.

The estimated parameters of the CMEM are presented in Table 1. The results suggest that

the level of daily volume captured by parameter α0 is low and insignificant, a result that is

confirmed by Naimoli and Storti (2019). Other parameters capturing daily dynamics, α1 and

α2, are significant and close to those reported by Brownlees et al. (2011). Intraday parameter

estimates show that this dynamic component µt,i follows an AR(1) structure as β1 is close to 1

and β2 is insignificant.

Detailed in-sample estimation results for the linear dynamic model from Section 2.2 are not

5



presented here but a brief outline of the salient features is as follows.The intercepts, θ̂i0, are

found to be largest at the beginning of trading day and then decrease during the middle of

the day. This controls changes in the unconditional level reflecting the diurnal component.

The Intraday autoregressive parameter estimates θ̂i3 are lowest at the beginning of the trading

day and gradually grow during the day. The reverse pattern is observed in the coefficients on

the daily lag, θ̂i1. The coefficients of the weekly lag, θ̂i2 show that the effect of longer-term

movements in volume are greatest as the start and end of the trading day. The coefficients on

the lagged error, θ̂i4 are negative and significant.

The autocorrelation of the estimated residuals of the linear model are reported in Figure 2.

As noted by Naimoli and Storti (2019) the large number of intraday observations makes the

autocorrelation tests extremely sensitive to deviations from the null hypothesis of white noise

errors. Consequently, Figure 2 shows the ACFs for the first 50 days used for estimation. The

residuals from the linear system exhibit minor negative correlations at the second and third

lags. This pattern is very similar to the results presented in Figure 5 of Brownlees et al. (2011)

for the basic model.

Table 1: Parameter estimates of a standard CMEM defined in
Section 2.1. The sample period is from 5 Jan 2004 to 20 May 2011.
The significant parameters at the 5% level are assigned (∗).

Parameter estimates

β1 0.98∗

β2 0.01

CMEM a 2.46∗

α0 0.02

α1 0.58∗

α2 0.40∗
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-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Linear system

Figure 2: Autocorrelation of the residuals vt,i over the first 50 days. Confidence intervals are
represented by ±1.96 ∗ standard errors.

Following Brownlees et al. (2011), two forecasting schemes are used here. One-day-ahead fore-
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casts, x̂t,i|t−1 are based on information available on the previous trading day and are made for

all 78 intervals of the following day. The CMEM forecast is given by

x̂t,i|t−1 = η̂t|t−1 φ̂i µ̂t,i|t−1, (10)

where φ̂i signals that estimated coefficients are used in its construction and

η̂t|t−1 = α̂0 + α̂1ηt−1 + α̂2x
(η)
t−1 (11)

µ̂t,i|t−1 = β̂0 + β̂1µ̂t,i−1 + β̂2x̂
(µ)
t,i−1|t−1. (12)

The recursion used for the multiple equation approach is again consists of forecasting for the

first bin

x̂t,1|t−1 = θ̂i0 + θ̂i1xt−1 + θ̂i2xt−5 + θ̂i3xt−1,78 + θ̂i4v̂t−1,78, (13)

and the remaining bins i = 2, . . . , 78,

x̂t,i|t−1 = θ̂i0 + θ̂i1xt−1 + θ̂i2xt−5 + θ̂i3x̂t,i−1|t−1 + θ̂i4v̂t,i−1|t−1, (14)

where v̂t,i−1|t−1 = xt,i−1 − x̂t,i−1|t−1.

The second forecasting scheme is the one-bin-ahead forecast, x̂t,i|i−1 that conditions on infor-

mation from the preceding bins on the same trading day. The recursion only differs from that

described above in that observed volume in the preceding bins are used in place of the forecasts.

Therefore x
(µ)
t,i−1 replaces x̂

(µ)
t,i−1|t−1 in equation (12) and xt,i−1 replaces x̂t,i−1|t−1 in equation

(14).

The out-of-sample forecasting procedure follows an expanding window approach. Both the

system of equations and CMEM are initially estimated using a window size of 2000 days. As

the out-of-sample forecasting procedure is conducted on a daily basis, all forecasts are made for

all 78 intervals in the following day.

Initially, it is useful to compare average trading volume against average predicted intra-day

volume over the whole sample (Figure 3). Interestingly both CMEM and the linear system

capture the spike in trading activity after the first 5 bins, however high trading activity during

the last 30 minutes of trading is captured better by the linear model.

To evaluate the out-of-sample forecast performance of CMEM and the linear model, following

Brownlees et al. (2011), the following criteria are used:

MSEV OL =
T∑

t=1

I∑

i=1

(xt,i − x̂t,i|· )
2 (15)

MSEVWAP =
T∑

t=1

(
I∑

i=1

(wt,i − ŵt,i|· )
p̄t,i

V WAPt

)2

1002, (16)
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in which VWAPt is defined as

V WAPt =

∑Jt
j=1 Vt(j)pt(j)
∑Jt

j=1 Vt(j)
,

where pt(j) and Vt(j) are, respectively, the price and volume of the j-th transaction on day

t and Jt is the total number of trades on day t, wt,i is the proportion of volumes traded in

bin i on day t, namely wt,i = xt,i/
∑I

i=1 xt,i, and p̄t,i is the VWAP of the i-th bin. Weights

ŵt,i|t−1 are obtained from predictions x̂t,i|t−1 using the one-day-ahead forecasting strategy and

weights ŵt,i|i−1 are calculated from one-bin-ahead predictions x̂t,i|i−1. A comparison of forecasts

from the models is made using the Diebold-Mariano test of equal predictability (Diebold and

Mariano, 1995).
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(a) Linear system
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(b) CMEM

Figure 3: Forecast of an average trading volume (dashed line) with an actual volume (continuous
line) obtained from a one-day-ahead forecasting scheme. The sample is from 21 May 2011 to
30 December 2016.

Table 2: Out-of-sample volume and VWAP tracking forecasting
results. For SPY the table reports the values of the volume and
VWAP tracking error loss functions. (∗) highlights the results of
the Diebold-Mariano test at the 1% level.

MSEV OL MSEVWAP

One-day-ahead

CMEM 0.2281 4.1396∗

Linear system 0.1932∗ 4.1766

One-bin-ahead

CMEM 0.1920 0.2303

Linear system 0.1431∗ 0.1711∗
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According to MSEV OL (Table 2), the linear system performs significantly better than CMEM.

This is true for both the one-day-ahead and one-bin-ahead strategies. Comparing WVAP track-

ing errors, the performance of CMEM is better than that of the linear system for the one-day-

ahead forecast, but the linear system is significantly more accurate in the one-bin-ahead case.

The DM test shows that the forecasts from these models are statistically different in all cases.

4 Conclusion

This paper outlines a multiple-equation approach to forecasting trading volume based on a

system of linear equations. It is shown that this system can capture the salient features of vol-

ume data, namely the diurnal U-shaped pattern, the periodic, and non-periodic dynamics. The

out-of-sample forecast results shows that the linear system performs better than a component

multiplicative error model (CMEM) when a simple MSE criterion is used. VWAP forecast-

ing results show that CMEM performs better out-of-sample for the one-day-ahead replication

strategy, but the linear model is preferable in terms of a one-bin-ahead forecast. In conclusion,

the multiple equation approach is a viable alternative to more complex nonlinear approaches

and provides a general framework that can be applied to any high-frequency financial data that

exhibits diurnal patterns.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author

upon reasonable request.
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