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Abstract 

The paper models the return generation process of asset prices by incorporating the 

observed daily Close, High and Low prices as a vector error correction process. In 

addition, various transformed prices, such as the Weighted Close, the Typical Price 

and the Median Price, are investigated as alternatives to the Close for depicting 

“consensus” prices. 

The vector error correction models reveal some interesting stylised facts for the US 

daily Dow Jones Industrial DJI30  Index data from 1990  to 1999  (10  years). The 

empirical results show, via the cointegrated models as specified, that the 

“cointegrating” errors significantly capture the behaviour of observed and transformed 

returns. In addition, goodness-of-fit tests fail to reject the extreme-value distribution as 

implied by the cointegrating vectors, thus suggesting an extreme-valued behaviour in 

the error-correction process. As the error-correction terms are extreme-valued and 

significant in the compound models as investigated, it can be said that the distribution 

of the observed returns will consequently be non-normal. 

Key words: High and Low prices, Vector Error Correction, Cointegration and Extreme-

Valued Distributions. 

JEL classification: C32  (Time-Series Models) 

                                                      

1 This paper was presented at the First International Workshop on Intelligent Finance (IWIF-1), 
Crown Promenade Hotel, Melbourne, Australia (University of Ballarat, Victoria) in December, 
2004 under the title “Compound Models of High-Low Speculative Prices: A Cointegration-based 
Approach”. 
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1 Introduction 

Daily closing prices are typically used as proxies for daily security prices and other 

financial timeseries data. Empirical observations on these financial data, however, 

usually not only include the closing prices C t( ( )) , but also the opening, the highest and 

the lowest prices O t H t L t( ( ), ( ), ( ))  for specific horizons such as days, weeks and 

months. Obviously, a multivariate vector of prices H t L t O t C t( ( ), ( ), ( ), ( ))  will be more 

informative than just the closing prices C t( )  for modelling and forecasting asset prices 

and returns2. 

The insight of this paper is that the High H t( )  and Low L t( )  prices can be used to 

model the return generation process of asset prices as illustrated by Fiess and 

MacDonald [2002]. In addition, we also analyse price behaviour using various 

“technical” price types: the Weighted Close WC t( ( )) , the Typical Price TP t( ( ))  and the 

Median Price MP t( ( )) . These “technical” price types are based on the notion of an 

“average” or  “consensus” price. 

The Weighted Close is computed by multiplying the Close by two, adding the High and 

the Low to this product, and dividing the result by four and is given as: 

(1) 
H t L t 2 C tWC t

4
( ) ( ) * ( )( ) + +=  

 The result is the average price with extra weight given to the closing price. 

The Typical Price is calculated by adding the High, Low, and closing prices together, 

and then dividing by three and is given as: 

(2) 
H t L t C tTP t

3
( ) ( ) ( )( ) + +=  

The result is the average, or typical price. 

                                                      

2 The “Open and Close refer to the price at the opening and the closing of the market 
respectively, High and Low prices correspond to the two extremes: the highest and lowest 
prices of the day” Fiess and MacDonald [2002]. 
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The Median Price is calculated by adding the High and Low price and dividing by two 

and is given as: 

(3) 
H t L tMP t

2
( ) ( )( ) +=  

The Median Price indicator is simply the midpoint of each day's price range. 

In Section 2 the observed and transformed data as used in the paper are described 

and discussed. In Section 3 the modeling methodology is described. The findings are 

tabulated and described in Section 4. The conclusions are presented in Section 5. 

 

2 Data 

The dataset used in this paper is the daily DJI30  Index prices from 1/1/1990 to 

1/1/2000 covering a period of 10  years 2527 observations( )  as shown in the top 

panel in Figure 2-1. We use the Highs, Lows and Closes of the DJI30  Index, instead 

of a typical stock price like IBM , as the aggregated index generally reflects better the 

systematic aspects of the market as a whole. The choice of the DJI30  Index is 

because it relates to the New York Stock Exchange NYSE( )  which is one of the 

largest and most researched markets in the world. We also compute the Weighted 

Close, the Typical Price and the Median Price for DJI30  Index. 

The bottom panel in Figure 2-1 illustrates the temporal movements of the various price 

types (H(t), L(t), C(t), WC(t), TP(t) and MP(t))  using the DJI30  Index series for the 

period 29/4/93 to 26/7/93 as an example. 
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Figure 2-1: DJI30 Price Data 
Notes: H(t)=High; L(t)=Low; C(t)=Close; WC(t)=Weighted Close; TP(t)=Typical Price; 
MP(t)=Median Price. 

Note that the Highs and Lows bound the other price types and accordingly can be 

termed as “extremal” prices. In contrast, the other price types are may be termed as 

“central” prices. Of the central price types, the Close is the most volatile. The Weighted 

Close, the Typical Price and the Median Price tend to be more of an “average” price. 

Non-stationary of the log-prices for all variables 

(H(t), L(t), C(t), WC(t), TP(t) and MP(t))  cannot be rejected as the results of the 

augmented Dickey-Fuller test shown in Table 2-1 suggest. 
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H(t)   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic  0.873061  0.9952 
Test critical values: 1% level  -3.432746  
 5% level  -2.862484  
 10% level  -2.567318  
L(t)   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic  0.719196  0.9926 
Test critical values: 1% level  -3.432746  
 5% level  -2.862484  
 10% level  -2.567318  
C(t)   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic  0.743036  0.9931 
Test critical values: 1% level  -3.432744  
 5% level  -2.862484  
 10% level  -2.567317  
WC(t)   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic  0.788019  0.9939 
Test critical values: 1% level  -3.432746  
 5% level  -2.862484  
 10% level  -2.567318  
TP(t)   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic  0.815585  0.9943 
Test critical values: 1% level  -3.432746  
 5% level  -2.862484  
 10% level  -2.567318  
MP(t)   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic  0.821153  0.9944 
Test critical values: 1% level  -3.432746  
 5% level  -2.862484  
 10% level  -2.567318  
*MacKinnon (1996) one-sided p-values. 
Table 2-1: Augmented Dickey-Fuller test statistic 

Figure 2-2 depicts the timeseries plots of the differenced logarithmic prices (logarithmic 

returns) for the High, Low and Close. The log-return series appear similar but are not 

identical, meaning they seem to have similar shocks or disturbances and even 

common volatilities over time. The plots also suggest that the D C D H  and  D L( ), ( ) ( )  

series are stationary. 

In fact as the results in Table 2-2 show, the D C( ) log-difference series is stationary. 

The null hypothesis that D C( )  has a unit root can be rejected. Similar results are 

obtained for the other variables, i.e. (D(H), D(L), D(WC), D(TP) and D(MP)) . Thus, 

for all our price vectors, the logarithmic price series are non-stationary and the 

logarithmic returns series are stationary. 
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Figure 2-2: Timeseries Plots [D(C) D(H)) D(L)] 

 

D(C)   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic -51.23833  0.0001 
Test critical values: 1% level  -3.432512  
 5% level  -2.862381  
 10% level  -2.567262  
*MacKinnon (1996) one-sided p-values. 
Table 2-2: Augmented Dickey-Fuller test statistic for D(C) Log-Returns 

 

 D(C) D(H) D(L) D(MP) D(TP) D(WC) 
 Mean  0.000558  0.000561  0.000564  0.000566  0.000561  0.000560 
 Median  0.000605  0.000884  0.000792  0.000801  0.000751  0.000809 
 Maximum  0.048605  0.042695  0.065996  0.040326  0.041937  0.043608 
 Minimum -0.074549 -0.042032 -0.067045 -0.049971 -0.057689 -0.061851 
 Std. Dev.  0.008917  0.007470  0.008677  0.007671  0.007460  0.007611 
 Skewness -0.409517 -0.187177 -0.306406 -0.278563 -0.400895 -0.455001 
 Kurtosis  8.201366  5.698868  9.528487  6.793541  7.608653  7.999361 
 Jarque-Bera  2919.214  781.6887  4527.192  1547.929  2304.050  2718.811 
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
 Observations  2527  2527  2527  2527  2527  2527 
Table 2-3: DJI30 Log-returns Summary Statistics 
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Table 2-3 lists the summary statistics for the dataset used. As can be seen, all the 

variables have negatively skewed distributions with moderately high kurtosis. As to be 

expected, the Jarque-Bera statistics significantly rejects the null hypothesis that these 

variables have normal distributions. 

In Figure 2-3 the correlations are shown for the four “central” price types investigated in 

this paper. The process of averaging involved in the definition of the “technical” prices 

seems to result in autocorrelations in the log-return series. 

Figure 2-3: Correlograms [D(C) D(WC) D(TP) D(MP)] 

More specifically, from Figure 2-3, the log-returns series using High and Low prices 

exhibit high (first-order) autocorrelations, whereas those log-return series using just the 

Close prices do not have any significant autocorrelations. This implies that any 

modeling incorporating the “extremal” prices will have more predictive ability compared 

to the ones based on just the closing prices. 

 ^DJI.days.close  

A
C

F

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 ^DJI.days.close and ^DJI.days.high

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

 ^DJI.days.close and ^DJI.days.low

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

 ^DJI.days.close and ^DJI.days.open

0 5 10 15 20 25

-0
.0

5
0.

0
0.

05
0.

10

 ^DJI.days.high and ^DJI.days.close

A
C

F

-25 -20 -15 -10 -5 0

0.
0

0.
2

0.
4

0.
6

 ^DJI.days.high  

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 ^DJI.days.high and ^DJI.days.low

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

 ^DJI.days.high and ^DJI.days.open

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

 ^DJI.days.low and ^DJI.days.close

A
C

F

-25 -20 -15 -10 -5 0

0.
0

0.
2

0.
4

0.
6

 ^DJI.days.low and ^DJI.days.high

-25 -20 -15 -10 -5 0

0.
0

0.
2

0.
4

0.
6

0.
8

 ^DJI.days.low  

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 ^DJI.days.low and ^DJI.days.open

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

 ^DJI.days.open and ^DJI.days.close

Lag

A
C

F

-25 -20 -15 -10 -5 0

0.
0

0.
2

0.
4

0.
6

0.
8

 ^DJI.days.open and ^DJI.days.high

Lag-25 -20 -15 -10 -5 0

0.
0

0.
2

0.
4

0.
6

 ^DJI.days.open and ^DJI.days.low

Lag-25 -20 -15 -10 -5 0

0.
0

0.
2

0.
4

0.
6

 ^DJI.days.open  

Lag0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Page 9 of 22 

 

 D(C) D(WC) D(TP) D(MP) 
D(C(-1))  0.030262  0.289916  0.382313  0.541707 
D(WC(-1))  0.027403  0.228773  0.300272  0.423320 
D(TP(-1))  0.025178  0.195668  0.256122  0.360015 
D(MP(-1))  0.019085  0.117264  0.151893  0.211057 

Table 2-4: First-Order Correlations [D(C) D(WC) D(TP) D(MP)] 

In Table 2-4 the estimated values of the first-order autocorrelation are listed. Note that 

the values of the first-order auto-correlations for the Weighted Close, Typical Price and 

the Median Price are of the same magnitude. 

Figure 2-4: Log-Returns Data 
Notes: D(C)=Close log-Returns; D(WC)=Weighted Close log-Returns; D(TP)=Typical Price log-
Returns; D(MP)=Median Price log-Returns. 
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investigate the relevance of “technical” prices for depicting “consensus” prices. In 
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returns. The QQ-plots for the various other central-type log-returns types have similar 

“shapes” indicating the similarity of the distributions of these “technical” log-returns. 

Hence, we can infer from Figure 2-1 and Figure 2-4 that the “technical” prices and 

returns are not very dissimilar from the Close prices and returns, as far as their 

distributions and realizations are concerned. In addition, the “technical” returns have 

fewer outliers and are auto-correlated. 

 

3 Methodology 

The returns generation process in this paper is specified to be based on a modified 

Vector Error Correction Model VECM( )  defined as: 

(4) { }
p

+ + - -

i=1
∆P(t)= α(i)∆P(t-i)+ α ξ (t)+α ξ t +ε(t)( )∑  

where ∆P(t-i) i p; 1,2,...,=  are the past changes in observed or transformed prices3 

and tε  is the current error. The terms within the brackets { }+ + - -α ξ (t)+α ξ t( )  are the 

current error-correction residuals. The error-correction residuals are implicitly defined to 

be the functions f H t P t 1{ ( ), ( )}−  and f L t P t 1{ ( ), ( )}−  and consequently are “current” 

asymmetric disturbances in our formulation. 

Fiess and MacDonald [1999] used a similar cointegration approach to illustrate the 

structural relationship between High, Low and Close prices. In this paper, we differ 

from Fiess and MacDonald [1999] by having the current High and Low prices in the 

error-correction terms and transforming the Close price to obtain the various price 

types commonly used in technical analysis. We also equate these transformed 

“technical” prices to the notion of  “consensus” prices as used by economists to 

highlight their relevance and similarities. 

                                                      

3 The prices can be the closing prices, the weighted closes, the typical prices or the median 
prices. 
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First we undertake a Vector Auto-Regressive VAR( )  Lag Order selection process. The 

results for various selection criteria are listed in Table 3-1. The SC selects 7 lags, the 

HQ selects 12 lags and the rest select the set maximum of 20 lags, including the AIC. 

In this paper we adopt the SC criteria and use 7 lags. 

VAR Lag Order Selection Criteria 
Endogenous variables: D(H(1)) D(L(1)) D(C)  
Exogenous variables: C  
Sample: 1 2528 
Included observations: 2506 
 Lag LogL LR FPE AIC SC HQ 
0  27072.54 NA   8.32E-14 -21.60378 -21.59681 -21.60125 
1  28681.18  3212.136  2.32E-14 -22.88043 -22.85253 -22.87030 
2  29116.11  867.4383  1.65E-14 -23.22036 -23.17153 -23.20264 
3  29357.05  479.9482  1.37E-14 -23.40546 -23.33571 -23.38014 
4  29501.76  287.9322  1.23E-14 -23.51378 -23.42310 -23.48086 
5  29571.15  137.8814  1.17E-14 -23.56197 -23.45037 -23.52146 
6  29633.23  123.2223  1.13E-14 -23.60433  -23.47181 -23.55623 
7  29666.95  66.85902  1.10E-14 -23.62407 -23.47062 * -23.56836 
8  29691.82  49.24136  1.09E-14 -23.63673 -23.46236 -23.57343 
9  29719.19  54.12607  1.07E-14 -23.65139 -23.45609 -23.58050 
10  29753.63  68.01943  1.05E-14 -23.67169 -23.45547 -23.59320 
11  29779.43  50.90665  1.04E-14 -23.68510 -23.44795 -23.59901 
12  29800.06  40.65892  1.03E-14 -23.69439 -23.43631  -23.60070* 
13  29811.74  22.96774  1.03E-14 -23.69652 -23.41752 -23.59524 
14  29824.81  25.70849  1.02E-14 -23.69977 -23.39985 -23.59090 
15  29837.53  24.95787  1.02E-14 -23.70273 -23.38188 -23.58626 
16  29851.16  26.72833  1.02E-14 -23.70643 -23.36466 -23.58236 
17  29866.13  29.32135  1.01E-14 -23.71120 -23.34850 -23.57953 
18  29876.71  20.69186  1.01E-14 -23.71246 -23.32883 -23.57320 
19  29886.07  18.30335  1.01E-14 -23.71275 -23.30820 -23.56590 
20  29907.77   42.33164*   1.00E-14*  -23.72288* -23.29741 -23.56843 

 
Table 3-1: VAR Lag Order Selection Criteria 
Notes: * indicates lag order selected by the criterion;  LR: sequential modified LR test statistic 
(each test at 5% level);  FPE: Final prediction error;  AIC: Akaike information criterion;  SC: 
Schwarz information criterion; HQ: Hannan-Quinn information criterion. 

Based on the VAR  lag order selection criteria, VECM  models with 6 lags are then 

fitted using the four “technical” price types: the Close, the Weighted Close, the Typical 

Price and the Median Price. The High and Low prices were modeled as lead prices in 

order to obtain “current” (and not lagged) error-correction terms on the RHS of 

Equation (4). 
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4 Findings 

As mentioned in Section 3, we use H t L t  and P(t)( 1), ( 1)+ +  and not 

H t L t  and P(t)( ), ( )  in our VECM  formulation to ensure that the error correction terms 

reflect the price changes relative to the last-period closing prices. We also restrict the 

error correction process in our VECM  model to be of an order analogous to 

H t P t{ ( ) ( 1)}− −  and L t P t{ ( ) ( 1)}− − . 

 

4.1 H(1)-L(1)-C VECM 

Series: H(1) L(1) C  
Unrestricted Cointegration Rank Test 
Hypothesized  Trace 5 Percent 1 Percent 
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value 
None **  0.832957  5113.965  29.68  35.65 
At most 1 **  0.209317  593.6747  15.41  20.04 
At most 2  0.000167  0.422925   3.76   6.65 
 *(**) denotes rejection of the hypothesis at the 5%(1%) level 
 Trace test indicates 2 cointegrating equation(s) at both 5% and 1% levels 
Hypothesized  Max-Eigen 5 Percent 1 Percent 
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value 
None **  0.832957  4520.291  20.97  25.52 
At most 1 **  0.209317  593.2517  14.07  18.63 
At most 2  0.000167  0.422925   3.76   6.65 
 *(**) denotes rejection of the hypothesis at the 5%(1%) level 
 Max-eigenvalue test indicates 2 cointegrating equation(s) at both 5% and 1% levels 
 
Table 4-1: Unrestricted Cointegration Rank Test 

Two cointegrating equations are significant at the 1% level as shown in Table 4-1. 

2 Cointegrating Equation(s):  Log likelihood  29822.89  
Normalized cointegrating coefficients (std.err. in parentheses) 
H(1) L(1) C   
 1.000000  0.000000 -1.003641   
   (0.00026)   
 0.000000  1.000000 -0.996798   
   (0.00028)   
Adjustment coefficients (std.err. in parentheses) 
D(H(1))  0.094165  0.314111   
  (0.02839)  (0.02521)   
D(L(1))  0.543547 -0.058504   
  (0.03276)  (0.02908)   
D(C)  0.737079  0.618202   
  (0.01610)  (0.01429)   
 
Table 4-2: CIs and ACs [EC(C,2) 1 6 H(1) L(1) C] 
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Table 4-2 displays the cointegrating coefficients and adjustment coefficients for the 

cointegrating vectors. The adjustment coefficients are estimated to be 0.737079  and 

 0.618202  respectively. Figure 4-1 shows the timeseries plots of the two cointegrating 

errors series as defined by the cointegrating vectors t t-1 1.000000 H -1.003641 Ci i  and 

t t-1 1.000000 L -0.996798 Ci i .  

 Figure 4-1: CI Residuals [EC(C,2) 1 6 H(1) L(1) C] 

The cointegrating errors appear to exhibit volatility clustering and share common 

shocks overtime. Higher volatilities are accompanied by higher and lower prices. The 

volatilities are also in tandem with the D C( )  log-returns shown in Figure 2-2 indicating 

that the VECM  modeling process maintains the inherent temporal dependencies in 

the data. 

The histograms of the cointegrating errors are illustrated in Figure 4-2. The 

cointegrating error historgrams are skewed and kurtotic in appearance. The 

cointegrating residual 1 series CR1( )  is positively skewed and the cointegrating 

residual 2 series CR2( )  is negatively skewed. This asymmetry is a direct 

-0
.0

2
0.

00
0.

02
0.

04

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

^DJI.days.coint.1.nc

-0
.0

6
-0

.0
4

-0
.0

2
0.

00
0.

02

^DJI.days.coint.2.nc

Cointegrating Residuals



Page 14 of 22 

consequence of the cointegrating variables as defined, since the Highs and Lows are 

the maximum and minimum values of the price series as observed. 

Figure 4-2: CI Histograms [EC(C,2) 1 6 H(1) L(1) C] 

As the Highs and Lows are the maximum and minimum values of the observed series, 

we have attempted to fit an “extreme-value” distribution to each of the two cointegrating 

error series. The results as tabulated in Table 4-3 and Table 4-4 are both significant at 

the 1% level. 

Hypothesis: Extreme Value Max 
Method Value   Adj. Value Probability  
Cramer-von Mises (W2) 7.657184 7.686293 < 0.01  
Watson (U2) 7.657032 7.686140 < 0.01  
Anderson-Darling (A2) 48.71436 48.89954 < 0.01  
 
Table 4-3: Empirical Distribution Test for CR1 Series 
 
Hypothesis: Extreme Value Min 
Method Value   Adj. Value Probability  
Cramer-von Mises (W2) 6.479187 6.503817 < 0.01  
Watson (U2) 6.475729 6.500346 < 0.01  
Anderson-Darling (A2) 40.44428 40.59802 < 0.01  
 
Table 4-4: Empirical Distribution Test for CR2 Series 
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Vector Error Correction Estimates 
 Standard errors in ( ) & t-statistics in [ ] 
Cointegrating Eq:  CointEq1 CointEq2  
H  1.000000  0.000000  
L  0.000000  1.000000  
C(-1) -1.001218 -0.998721  
  (3.2E-05)  (3.4E-05)  
 [-31668.2] [-29367.9]  
Error Correction: D(H(1)) D(L(1)) D(C) 
CointEq1  0.423503  0.688261  0.792681 
  (0.07958)  (0.09271)  (0.04527) 
 [ 5.32155] [ 7.42342] [ 17.5098] 
CointEq2  0.433406  0.365643 0.718228 
  (0.07419)  (0.08643)  (0.04220) 
 [ 5.84222] [ 4.23068] [ 17.0195] 
R-squared  0.161750 0.155601  0.809742 
Adj. R-squared  0.155379  0.149183  0.808296 
 
Table 4-5: EC(C,2) 1 6 H(1) L(1) C 

Table 4-5 shows a significant result for the HLC VECM−  model. The R-squared is 

0.809742  and the adjustment coefficients are 0.792681  and  0.718228 , both of 

which are very significant for depicting the D C( )  variable, indicating that the current-

period’s closing log-returns are significantly explained by current-period’s cointegrating 

errors as modeled. The R-square values become 0.161750  and 0.155601 , when 

D C( )  is replaced by D H 1( ( ))  and D L 1( ( ))  respectively, indicating that the model 

formulation implicitly captures the D C( )  series better than the D H 1( ( ))  series or the 

D L 1( ( ))  series. 

This is also confirmed by results of the fitted Ordinary Least Squares OLS( )  

regression D(C)=A(1)+A(2)*(H-C(-1))+A(3)*(L-C(-1))  as is tabulated in Table 4-6. 

The R-squared in this case is 0.810820 . 
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Dependent Variable: D(C) 
Method: Least Squares 
D(C)=A(1)+A(2)*(H-C(-1))+A(3)*(L-C(-1)) 
 Coefficient Std. Error t-Statistic Prob.   
A(1) -3.83E-05 0.000226 -0.169900 0.8651 
A(2) 0.701555 0.012055 58.19487 0.0000 
A(3) 0.666991 0.010979 60.74954 0.0000 
R-squared 0.810820     Mean dependent var 0.000484 
Adjusted R-squared 0.810684     S.D. dependent var 0.009372 
S.E. of regression 0.004078     Akaike info criterion -8.165517 
Sum squared resid 0.046157     Schwarz criterion -8.159116 
Log likelihood 11348.99     Durbin-Watson stat 2.222758 
 
Table 4-6: LS D(C)=A(1)+A(2)*(H-C(-1))+A(3)*(L-C(-1)) 

 
Figure 4-3: Log-Returns [EC(C,2) 1 6 H(1) L(1) C] 

As shown by the QQ-plots in Figure 4-3, the distribution of the fitted data cannot be 

distinguished from the Close log-returns data with the exception of some “outliers”. 

Note that the Close QQ-plot tends to trace the Low log-returns for low values of log-

returns and the High log-returns for High values of log-returns. 
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4.2 H(1)-L(1)-WC VECM 

The results for the H-L-WC VECM model are tabulated in Table 4-7. 

Vector Error Correction Estimates 
 Standard errors in ( ) & t-statistics in [ ] 
Cointegrating Eq:  CointEq1 CointEq2  
H  1.000000  0.000000  
L  0.000000  1.000000  
WC(-1) -1.001228 -0.998733  
  (3.2E-05)  (3.4E-05)  
 [-31232.9] [-29606.2]  
Error Correction: D(H(1)) D(L(1)) D(WC) 
CointEq1  0.850589  1.209470  0.774300 
  (0.14522)  (0.16910)  (0.04129) 
 [ 5.85715] [ 7.15243] [ 18.7545] 
CointEq2  0.852924  0.881647  0.727418 
  (0.13760)  (0.16022)  (0.03912) 
 [ 6.19867] [ 5.50268] [ 18.5952] 
R-squared  0.162566  0.157287  0.934832 
Adj. R-squared  0.156202  0.150882  0.934337 
Table 4-7: EC(C,2) 1 6 H(1) L(1) WC 

The R-squared value is  0.934832  and the adjustment coefficients are 0.774300  and 

0.727418  for  D WC( ) . 

 

4.3 H(1)-L(1)-TP VECM 

The results for the H-L-TP VECM model are tabulated in Table 4-8. 

Vector Error Correction Estimates 
 Standard errors in ( ) & t-statistics in [ ] 
Cointegrating Eq:  CointEq1 CointEq2  
H  1.000000  0.000000  
L  0.000000  1.000000  
TP(-1) -1.001232 -0.998737  
  (3.2E-05)  (3.4E-05)  
 [-31088.1] [-29680.8]  
Error Correction: D(HIGH(1)) D(LOW(1)) D(TPRICE) 
CointEq1  1.293104  1.754050  0.771573 
  (0.21301)  (0.24801)  (0.04037) 
 [ 6.07062] [ 7.07248] [ 19.1148] 
CointEq2  1.283745  1.412634  0.733201 
  (0.20348)  (0.23692)  (0.03856) 
 [ 6.30891] [ 5.96260] [ 19.0148] 
R-squared  0.162898  0.157771  0.969871 
Adj. R-squared  0.156536  0.151370  0.969642 
Table 4-8: EC(C,2) 1 6 H(1) L(1) TP 
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The R-squared value is 0.969871  and the adjustment coefficients are 0.771573  and 

0.733201  for  D TP( ) . 

 

4.4 H(1)-L(1)-MP VECM 

The Median Price VECM  model is a tautology4 as the MPrice is a simple average of 

the High and Low prices. Consequently, any attempt to empirically fit the defined 

VECM  model results in a singular matrix. To circumvent this impasse, we use OLS 

regression for D(MP)=A(1)+A(2)*(H-MP(-1))+A(3)*(L-MP(-1))  to obtain estimates 

of the adjustment coefficients and the results are listed in Table 4-9. 

Dependent Variable: D(MP) 
Method: Least Squares 
D(MP)=A(1)+A(2)*(H-MP(-1))+A(3)*(L-MP(-1)) 
 Coefficient Std. Error t-Statistic Prob.   
A(1) 4.14E-18 3.85E-17 0.107470 0.9144 
A(2) 0.500000 2.05E-15 2.43E+14 0.0000 
A(3) 0.500000 1.82E-15 2.75E+14 0.0000 
R-squared 1.000000     Mean dependent var 0.000562 
Adjusted R-squared 1.000000     S.D. dependent var 0.007662 
S.E. of regression 5.84E-16     Sum squared resid 8.59E-28 
Durbin-Watson stat 1.969278    
Table 4-9: LS D(MP)=C(1)+C(2)*(H-MP(-1))+C(3)*(L-MP(-1)) 

The R-squared value is 1.0  and the adjustment coefficients are 0.500000  and 

0.500000  for D MP( ) . The R-square of 1.0  indicates an exact fit. The adjustment 

coefficients reflect the fact that the Median Price is a simple average of the High and 

Low prices. This is also confirmed by the QQ-plots in Figure 4-4 where the fitted data 

cannot be distinguished from the computed Median Price log-returns. 

                                                      

4 This tautology was pointed out by Professor Dipankor Coondoo, whilst proof reading a draft of 
this paper. Professor Coondoo is attached to the Economic Research Unit, Indian Statistical 
Institute, Kolkata.  
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Figure 4-4: QQ-Plots [LS D(MP)=C(1)+C(2)*(H-MP(-1))+C(3)*(L-MP(-1))] 

Note that the Median Price QQ-plots falls in the middle of the High and Low QQ-plots 

as would be expected of log-returns based on Median prices. Thus, as we go from 

using the Close prices to using the Median Prices, the distributions of the “consensus” 

prices move from being influenced by the “tails” of the High and Low distributions to the 

weighted sum causing these “consensus” prices to be less influenced by the “outliers”. 

 

5 Conclusions 

By using an econometric model, we are perhaps able to show that the “technical” 

prices heuristically computed and empirically used by technical traders are nothing 

more that the “consensus” prices much sought after by economists. This raises doubts 

about the validity of the Close price as the “true” measure of the “consensus” price. The 

“technical” prices are by construct “average” prices and hence are more amenable to 

depict the “consensus” prices as implied by economists. 
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We also show that there is a statistically increasing and significant relationship between 

changes in “technical” prices and the cointegrating residuals of a VECM  model 

constructed from the H 1( ) , L 1( )  and the four “technical” prices, C WC TP and  MP, , . 

As we move from the Close to the Median Price representation of consensus value, we 

find that the explanatory power of the corresponding VECM  model increases. This is 

not surprising due to the fact that the computed “technical” prices are functions of the 

High, Low and Close prices. The Median Price OLS  model (as the VECM  model was 

indeterminate) gives the best fit of the various models considered with an R-square of 

1.0 5. The worst fit is the Close Price VECM  model with a R-square of 0.809742 . It is 

reasonable to assume that one should be able to make better estimates of Median 

Prices as compared to Close Prices. The values of the adjustment coefficients also 

decrease as we progress from Close prices to Median Prices. This is consistent with 

the fact that sometime Close price are also the High or Low prices, but the “technical” 

prices are by definition functions of both the High and Low prices, thus displaying lower 

weightings on the cointegrating error terms. 

We also empirically show that the distribution of the daily returns, whatever the 

“technical” proxy used to model the log-returns, is not normally distributed but is 

skewed with a high kurtosis. We find that the empirical distributions of the cointegrating 

errors as captured by the High, Low and the last-period Close prices have shapes not 

dissimilar from the shape of the density function of an extreme-value distribution. This 

suggests that the “fat-tails” of log-returns are possibly the consequence of hidden 

extreme-valued drivers in the daily price generation process. In this paper, the error-

correction vectors in the VECM  models are shown to empirically proxy these hidden 

extreme-valued drivers. 

                                                      

5 The perfect value for R-square is a consequence of the formulation and is only relevant for its 
descriptive ability, and not its predictability. 
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