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Abstract 

Daily closing prices are typically used as proxies for daily security prices and for 

other financial time series data. Empirical observations of financial data, 

however, usually not only contain the closing prices, but also frequently include 

the opening, the highest and the lowest prices for specific horizons such as 

days, weeks and months. Obviously, any insight or information as to the 

distribution of the Open, High and Low prices should contribute to a better 

understanding of the data generation process (DGP). 

The insight of this paper is that an exact functional representation can be used 

to depict the relationship between the observed Close, High and Low price-

changes. The underlying distribution is, however, not defined explicitly but 

numerically determined as an empirical cumulative distribution function (ECDF). 

This approach enables extreme value distributions to be defined and statistically 

tested using the Kolmogorov-Smirnov (KS) goodness-of-fit test. 

The findings shed new light on the statistical behaviour of financial asset 

returns, especially the High and Low log-returns. The multivariate relationships 

identified in this paper could be used to improve our understanding of the 

returns generation process of financial assets. 

 

Key words:  empirical cumulative distribution function (ECDF); empirical 

probability density function (EPDF); extreme-value theory (EVT); asset return 

distributions. 

Topic Areas: (1) Asset Pricing; (3) Capital markets; (6) Finance Theory and 

Evidence; (11) Quantitative Finance.  

JEL Classifications: D30 – General; G19 – Other. 
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1 Introduction 

Daily closing prices are typically used as proxies for daily security prices and for 

other financial time series data. Empirical observations of financial data, 

however, usually not only contain the closing prices, but also frequently include 

the opening, the highest and the lowest prices for specific horizons such as 

days, weeks and months. The opening price refers to the price at the opening of 

the market; whereas the High and Low prices correspond to the two extremes: 

the highest and lowest prices of the day (see Fiess and MacDonald [2002]).  

Obviously, any insight or information as to the distribution of the Open, High and 

Low prices should contribute to a better understanding of the data generation 

process (DGP). The High and Low price-changes are random variables that 

depend on the parent distribution of the underlying DGP and the sampling 

period. Unfortunately, there is neither an economic theory nor a statistical 

theory to assess the exact form of the parent distribution (of the DGP). Officer 

[1972] claimed that there is “no natural law that determines which particular 

function accurately describes the distribution of the variables, if indeed any 

analytical function accurately describes it.” This view is further reinforced by Los 

[2003] who states that “the scientific debate – about what kind of distributions 

best describe financial time series – is not yet settled, and maybe never will”. 

Consequently, the “true” distribution of the parent variable is not likely to be 

precisely known and, therefore, if this distribution is not known, neither is the 

exact distribution of the extremes1. For this reason, the study of extreme asset 

price changes is carried out using asymptotic extreme value theory instead of 

                                            

 

 

1 Even small errors in the choice of the parent distribution cannot be permitted when making 
inferences of the extremes. 
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exact extreme value theory (see Longin [1996]). Asymptotic extreme value 

theory enables distribution-free results to be obtained. The asymptotic 

approach, however, is a limiting distribution and is consequently only relevant 

for large sample sizes. 

The contribution of this paper is that an exact distribution function is used to 

depict the relationship between the observed Close, High and Low price-

changes. The underlying distribution is, however, not defined but numerically 

determined as an empirical cumulative distribution function (ECDF). This 

approach enables extreme value distributions to be statistically tested using the 

Kolmogorov-Smirnov (KS) goodness-of-fit (GoF) test. 

The daily extreme movements of the DJI30 index and its constituent stocks for 

the period 1/1/2000 to 1/1/2005 (5 years) are examined. The daily extreme 

movements are the High log-returns and the Low log-returns. It is shown 

empirically that the value of the order-parameters for the daily extreme High and 

Low log-returns fall in the range of 1  and 3  for DJI30 stocks. The DJI30 index 

log-returns, however, display a value of between 4  and 5 . For both stocks and 

the index, the hypothesis that the distributions of the “extremals” (High and Low 

log-returns) are exact extreme-valued distributions of the “centrals” (Close log-

returns) distributions cannot be significantly rejected for most of the cases 

considered. 

The remainder of the paper is organized as follows: In Section 2 the functional 

form of the exact extreme-valued distributions is defined and discussed. In 

Section 3 the empirical distribution function is defined and discussed. The data 

is described in Section 4. The KS-test is defined and discussed in Section 5. 

The results are presented in Section 6. Section 7 gives the implications of the 

findings and suggestions for future research. 
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2 Exact Distribution Functions 

The exact distribution of the extreme values can be written as functions of the 

initial distribution and the sample size n  (see Gumbel [1958]). The probability, 

that all of n  independent observations on a continuous variate are less than x  

is ( )nF x . 

This can be interpreted as the probability n:nF (x)  that the largest observation 

amongst n  independent observations is less than or equal to x : 

(1.1) n
n:nF (x)=F (x)  

Accordingly, given ( )F x  one can compute n:nF (x) . The different functions of 

n:nF (x)  form a system of curves that shifts to the right without intersection for 

increasing n . All quantiles, the modes, means of the largest value increase with 

n . Correspondingly, the probability 1:n1 - F (x)  that the smallest among n 

independent observations is less than x is obtained from (see Gumbel [1958]): 

(1.2) n
1:nF (x) =1 - (1 - F(x))  
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Figure 2-1 Exact Density and Cumulative Distribution Functions 
Notes: The top-panel depicts the theoretical CDFs and the bottom-panel depicts the theoretical 
DDFs 

The density functions, : ( )n nf x  and 1: ( )nf x , of the largest and the smallest values 

are found by differentiation and are given as (see Gumbel [1958]): 

(1.3) n-1
n:nf (x) = nF(x) f(x)  

(1.4) n-1
1:nf (x) = n(1 - F(x)) f(x)  

Figure 2-1 illustrates the theoretical or exact cumulative and density functions 

depicted by equations (1.1) and (1.3). For increasing sample sizes, the curves 

representing consecutive distributions of extremes have different shapes. If the 

initial distribution is symmetrical about median zero, the cumulative extreme-

valued distributions are no longer symmetrical since (see Gumbel [1958]): 

(1.5) n:n n:n1 - F (x) F (-x)≠  and 

(1.6) 1:n 1:n1 - F (x) F (-x)≠  
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Consequently, the process of taking extremes introduces asymmetry. In 

contrast, the largest and smallest values of a symmetrical distribution are 

mutually symmetrical (see Gumbel [1958]): 

(1.7) n:n 1:nF (x) =1 - F (-x)  and 

(1.8) n:n 1:nf (x) = f (-x)  

The symmetry principle, depicted by equations (1.7) and (1.8), means that from 

a given distribution of the largest value the distribution of the smallest value may 

be obtained by changing the sign of the observed variables. In two mutually 

symmetrical distributions, the distribution of the largest value of one is the 

distribution of the smallest of the other, and vice versa and can be depicted as:  

(1.9) { } { }1 2, n 1 2, nmin x ,x ...,x = -max -x ,-x ...,-x  

As noted by Gumbel [1958] and as we do in this paper, the study of extreme 

values may be restricted to that of only the largest value or maximum. 

 

3 Empirical Distribution Functions 

As already mentioned, in Section 1, if the distribution of the parent variable 

cannot be precisely defined then neither is the exact distribution of the 

extremes. We circumvent the problem by using the empirical distribution 

equivalents. The empirical distribution function (ECDF) of a sample, ( )nF x , is a 

step function defined as: 

(1.10) n i i

n

x x

F x i n x x x i n

x x

(1)

( ) ( 1)

( )

0 ;                               

( ) /  ;  ;  1,..., 1

1 ;                              
+

⎧⎪ <⎪⎪⎪⎪= ≤ < = −⎨⎪⎪⎪ ≤⎪⎪⎩
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where ( )nF x  is the proportion of observations with a value less or equal to x , 

with increasing steps of 1/ n  at each observation. Figure 3-1 depicts the ECDFs 

and the empirical density distribution functions (EDDFs). 

Figure 3-1 Empirical Density and Cumulative Distribution Functions 
Notes: The top-panel depicts the ECDFs and the bottom-panel depicts the EPDFs. 

The goodness-of-fit (GoF) test used in this paper compares two empirical 

distribution functions. The GoF test is based on the differences between the two 

fitted ECDFs and rejects the null when the differences are too large. Although 

the KS-test can be used for any distribution, critical values for these tests 

depend upon the null distribution. Fortunately there are modified KS-tests which 
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are distribution free2 (see Gibbons and Chakraborti [1992]). Figure 3-2 is a plot 

of the ECDF for the normalized trade-returns. The dark line is the symmetrical 

parent ECDF and the grey line is the asymmetrical extremal ECDF. Note that 

the two ECDFs are quite distinct from each other, with the ECDF for the 

extremes deviating quite significantly from the ECDF for the parent variates. 

Figure 3-2: Two Empirical Cumulative Distribution Functions 
Notes: The dark line is the symmetrical parent ECDF whereas the grey line is the asymmetrical 
extremal ECDF. 

                                            

 

 

2 The Wilcoxon ranksum test is appropriate to detect differences in location and the Siegel-
Turkey test is especially appropriate to detect differences in dispersion, both of which are not of 
concern here. 
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The statistic measuring the difference between ( )nF x  and ( )F x  are called the 

EDF statistics3, D+  and D− , which are respectively the largest vertical 

difference when ( ) ( )nF x F x>  and the largest vertical difference when 

( ) ( )nF x F x< . Formally, 

(1.11) { }sup ( ) ( )x nD F x F x+ = −  and 

(1.12) { }sup ( ) ( )x nD F x F x− = −  

The more commonly used EDF statistic by Kolmogorov [1933] however is: 

(1.13) sup ( ) ( ) max( , )x nD F x F x D D+ −= − =  

D  is also known as the Kolmogorov-Smirnov statistic (see Chakravart, Laha, et 

al. [1967]). The Kolmogorov-Smirnov (KS) test is used in this paper to 

determine if there is a direct relationship between the distributions of the Close, 

High and Low log-returns. 

 

4 Data 

The DJI30 index and the DJI30 stocks dataset each consist of 1255 daily 

logarithmic returns that cover a 5-year sample period from 1/1/2000 to 1/1/2005. 

The daily logarithmic returns are computed as Close-to-Close, High-to-Close 

and Low-to-Close log-returns. 

                                            

 

 

3 Note nF (x)  is used to represent the empirical distribution and n:nF (x)  is used to represent 
the exact nth-order extremal distribution. 
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The DJI30 Index logarithmic returns are shown in Figure 4-1. The top-panel 

depicts the High and Low log-returns, whereas the bottom-panel depicts the 

Close log-returns. The asymmetry in the High Low log-returns timeseries can be 

seen from the top-panel plot. In both panels the heteroskedasticity is similar 

across the different log-returns. Whatever the DGP that is generating the Close-

to-Close log-returns also has the same volatility influence on the High and Low 

log-returns. 

Figure 4-1 DJI30 High, Low and Close log-returns 
Notes: The top panel depicts the High and Low log-returns. The bottom panel depicts the Close 
log-returns. 

The summary statistics for the DJI30 index is listed in Table 4-1. The non-

symmetry in the High and Low log-returns is affirmed by the positive mean and 

skewness values across all the stocks and the ^DJI index (the Low log-returns 

have been multiplied by a factor of 1 0.− ). 
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Symbol High.mean High.stdev High.skew High.kurt Low.mean Low.stdev Low.skew Low.kurt
AA 0.0157 0.0185 1.0198 6.388 0.0168 0.0193 0.9285 6.4388 
AXP 0.0091 0.0173 1.0686 5.4215 0.0085 0.0186 0.9225 6.045 
BA 0.0111 0.0173 0.7265 7.987 0.0146 0.0177 1.2414 7.1911 
C 0.014 0.016 1.2745 7.8481 0.0095 0.0187 0.9429 7.29 
CAT 0.0103 0.0167 1.0592 6.0721 0.0136 0.016 1.1595 6.9862 
DD 0.0095 0.0158 1.1188 7.5758 0.0132 0.0145 0.8377 5.8461 
DIS 0.0104 0.0199 0.9365 10.8747 0.0169 0.0198 0.3538 7.4579 
EK 0.0087 0.018 0.977 9.2804 0.0139 0.016 1.0743 8.7591 
GE 0.0133 0.0159 1.4112 8.2334 0.0142 0.0168 1.1696 9.0923 
GM 0.0102 0.0169 0.7492 7.0761 0.0136 0.0168 1.1047 6.884 
HD 0.0102 0.0196 0.9072 7.6701 0.0116 0.0195 0.7943 6.1487 
HON 0.0116 0.0195 0.8653 7.0993 0.0167 0.021 1.2357 9.3602 
HPQ 0.0187 0.0259 0.7976 8.019 0.0199 0.0249 1.1704 7.5383 
IBM 0.0128 0.0167 0.9761 8.121 0.0088 0.0169 0.4658 7.081 
INTC 0.0212 0.0244 0.6694 6.4131 0.0194 0.0247 0.7028 6.5853 
IP 0.0101 0.0168 1.4373 8.1248 0.0146 0.0161 1.0351 6.3262 
JNJ 0.0076 0.0124 1.0345 9.1224 0.0102 0.0119 0.8069 5.6445 
JPM 0.0158 0.0197 1.2037 7.4615 0.0103 0.0212 0.9804 6.9648 
KO 0.0066 0.0138 1.0689 7.2536 0.0094 0.0144 1.4844 10.4074 
MCD 0.0127 0.0151 0.9576 8.3085 0.0138 0.0157 1.1847 7.418 
MMM 0.0079 0.0136 1.6677 8.3985 0.0106 0.0131 1.2419 9.0512 
MO 0.009 0.0168 1.6792 10.1571 0.0075 0.0181 1.2319 9.7345 
MRK 0.0116 0.0143 0.8911 7.6115 0.013 0.0153 1.536 8.8304 
MSFT 0.0109 0.0185 0.7323 7.5007 0.0147 0.0184 0.762 6.4343 
PG 0.0057 0.0125 1.9277 10.9469 0.0075 0.0123 1.3346 10.6521 
SBC 0.0104 0.0173 0.8055 7.7778 0.011 0.0186 1.685 10.078 
T 0.0102 0.0211 0.849 8.5899 0.0181 0.0203 1.1682 7.1529 
UTX 0.0103 0.0155 1.1748 6.2333 0.009 0.0156 1.0359 5.5246 
WMT 0.0097 0.0165 1.3738 8.3027 0.0101 0.017 1.0227 6.439 
XOM 0.0103 0.0112 0.8232 5.0765 0.0103 0.0129 1.2664 7.2275 
^DJI 0.0128 0.0091 1.093 7.4939 0.0134 0.0092 0.8975 6.1705 
Table 4-1 Summary Statistics for DJI stocks and index. 
Notes: High.mean=mean of High log-returns; High.stdev=standard deviation of High log-returns; 
High.skew=skewness of High log-returns; High.kurt=kurtosis of High log-returns; 
Low.mean=mean of Low log-returns; Low.stdev=standard deviation of Low log-returns; 
Low.skew=skewness of Low log-returns; Low.kurt=kurtosis of Low log-returns. 

The non-normality of the High and Low log-returns is affirmed by the significant 

skewness and kurtosis values observed. The skewness values range from 

0.7265  to 1.9277  and the kurtosis values range from 5.0765  to 10.9469 . The 

standard deviation for the DJI30 index log-returns is smaller than the standard 

deviations of the stocks, as one would expect. 
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Figure 4-2: Boxplots and PDFs for DJI30 High, Low and Close log-returns 
Notes: The top-panel depicts boxplots of log-returns. The bottom-panel depicts the probability 
density functions of log-returns. 

Figure 4-2 displays the boxplots and empirical density functions for the High, 

Low and Close log-returns. The empirical density functions are fitted using 

kernel estimates (see Wegman [1972]). The right-panel shows the positive 

skewness inherent High log-returns and the left-panel the negative skewness in 

Low log-returns. The bottom-panel depicts symmetrical distributions for Close 

log-returns and asymmetrical distributions for the High and Low log-returns. The 

Low log-returns are left-skewed and the High log-returns are right-skewed. Note 

that the Low log-returns are to the left of the Close log-returns and the High log-

returns are to the right of the Close log-returns. 
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Figure 4-3 ACFs before and after Cochrane-Orcutt corrections 
Notes; Top panels depict the ACFs before applying the Cochrane-Orcutt Correction. The bottom 
panels depict the ACFs after applying the Cochrane-Orcutt Correction. 

In Figure 2-1 the ACF outcomes of Cochrane-Orcutt corrections are illustrated 

(see Cochrane and Orcutt [1949]). The ACF plots indicate that all the auto-

correlations at various lags in the Close, High and Low log-returns have been 

effectively removed. Consequently, reliable statistical inferences can be made 

from the statistical results obtained from testing the High, Low and Close log-

returns. 
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5 Methodology 

The Kolmogorov-Smirnov (KS) test is used in this paper to determine if there is 

a direct relationship between the distributions of the Close, High and Low log-

returns (see Chakravart, Laha, et al. [1967]). The test is based on the empirical 

cumulative distribution function (ECDF). Given n  ordered data points, the test 

statistic is defined as:  

(1.14) 

ii n

ii n

D i n p

D p i n

D D D

( )1,...,

( )1,...,

max [ / ]

max [ ( 1) / ]

max [ , ]

+
=

−

=
+ −

= −

= − −

=

 

where /i n  is the number of points less than ( )ip  and the ( )ip s are ordered from 

smallest to largest value. This is a step function that increases by 1/ n  at the 

value of each ordered data point. 

An attractive feature of this test is the distribution of the KS test-statistic itself 

does not depend on the underlying cumulative distribution function being tested. 

Another advantage is that it is an exact test (the Chi-Squared test depends on 

an adequate sample size for the approximations to be valid). The KS-test if 

used with estimated parameters, however, tends to be conservative. This 

conservatism means the actual significance level for the test is smaller than the 

stated significance level. A conservative test may incorrectly fail to reject the 

null hypothesis, therefore decreasing its power4 (Type II error). 

                                            

 

 

4 This is only a problem for sample sizes of less than 50 . In this paper, the samples sizes are 
over 1000 . 
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The KS test-statistic is used to fit and to compare the empirical cumulative 

distribution functions of the Close log-returns with the empirical cumulative 

distribution functions High and Low log-returns. Figure 5-1 illustrates the fitting 

process used. The fitting process used is based on a quasi-Newton method 

using the double dogleg step with the BFGS secant update to the Hessian (see 

Dennis and Mei [1979] and Dennis, Gay, et al. [1981]). The process finds a 

local minimum of the nonlinear EDCF function by varying the order parameter 

n . 

Figure 5-1 Observed and Fitted ECDFs 
Notes: The dark lines depict the parent ECDF and the extremal ECDF. The multiple grey lines 
depict the ECDFs for the various values of order-parameter attempted by the fitting process. 

The value of the KS statistic for two samples is based on the procedure given 

by Hollander and Wolfe [1999]. The p-value of the KS-statistic is determined 

using the algorithm given by Kim and Jennrich [1970]. 

In this paper, the following four hypotheses are tested. 

Hypothesis 1, H1  (High versus Close log-returns): 
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(15) 
n

N n:n
n

A n:n

H1 ECDF (High returns)= ECDF (Close returns)
H1 ECDF (High returns) ECDF (Close returns)

:

: ≠
 

Hypothesis 2, H2 ,  (Low versus Close log-returns): 

(16) 
n

N n:n
n

A n:n

H2 ECDF (-Low returns)= ECDF (Close returns)
H2 ECDF (-Low returns) ECDF (Close returns)

:

: ≠
 

Hypothesis 3, H3 , (High versus Low log-returns): 

(17) 
n

N n:n
n

A n:n

H3 ECDF (High returns)= ECDF (-Low returns)
H3 ECDF (High returns) ECDF (-Low returns)

:
: ≠

 

Hypothesis 4, H4 , (Low versus High log-returns): 

(18) 
n

N n:n
n

A n:n

H4 ECDF (-Low returns)= ECDF (High returns)
H4 ECDF (-Low returns) ECDF (High returns)

:
: ≠

 

The best order parameter n  that minimizes KS-statistic is determined initially 

and subsequently the minimal KS-statistic obtained is tested for statistical 

significance. The hypotheses are tested against p-values of 1% (“***”), 5% (“**”) 

and 10% (“*”). 

 

6 Results 

Figure 6-1 depicts the “original” ECDFs (bold dark lines) and the “fitted” ECDFs 

(thin grey lines) for the DJI30 index logarithmic returns. The top-panel shows all 

the DJI30 log-prices for the period 1/1/2000 to 1/1/2005. The High, Low, Open 

and Close log-prices are illustrated. The middle-panel depicts the High log-

returns versus the Close log-returns; whereas the bottom-panel depicts the Low 

log-returns versus the Close log-returns.  

The fitted order-parameters are 4.6088  and 5.0953  for the High and Low log-

returns respectively. Both estimates cannot be rejected even at the 10% level 
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(“*”). The fitted ECDFs appear to progress towards the extremal ECDFs in the 

plots. In Figure 6-2 the ECDFs for two of the DJI30 stocks are illustrated: 

Hewlett-Packard and International Business Machines. The ECDF fits for HPQ 

cannot be rejected at the 10% level. The ECDF fit for IBM High log-returns can 

be rejected at the 5% level and the ECDF fit for Low IBM log-returns can be 

only be rejected at the 10% level. These findings are consistent across all the 

other DJI30 stocks. 

Figure 6-1 ECDFs of DJI30 Index Close, High and Low log-returns 
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Figure 6-2 Close-High and Close-Low GoFs for HPQ and IBM log-returns 
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Symbol High.est High.ses High.ks High.p Low.est Low.ses Low.ks Low.p 
AA 2.2777 0.0417 0.0752 *** 2.4144 0.0468 0.0583 ** 
AXP 1.6443 0.0292 0.0499 * 1.5786 0.0305 0.0483 
BA 1.8333 0.0328 0.0599 ** 2.3375 0.0399 0.0349 
C 2.4778 0.047 0.0641 ** 1.6933 0.0309 0.0407 
CAT 1.8627 0.0336 0.0602 ** 2.2627 0.0451 0.0559 ** 
DD 2.0355 0.0363 0.0456 2.7978 0.0529 0.0528 * 
DIS 1.8161 0.0322 0.0628 ** 2.5859 0.0454 0.0302 
EK 1.7412 0.0334 0.0514 * 2.5287 0.0507 0.0645 *** 
GE 2.464 0.0471 0.0583 ** 2.6177 0.0487 0.051 * 
GM 1.9135 0.0349 0.0556 ** 2.3769 0.0466 0.0466 
HD 1.7553 0.031 0.064 ** 1.9132 0.0359 0.043 
HON 1.864 0.0348 0.0591 ** 2.508 0.0476 0.0553 ** 
HPQ 2.3582 0.0465 0.0402 2.4709 0.0481 0.0422 
IBM 2.3759 0.0434 0.049 * 1.8306 0.0344 0.0466 
INTC 2.4344 0.0487 0.0611 ** 2.2937 0.0438 0.0594 ** 
IP 1.947 0.0373 0.0576 ** 2.6862 0.0496 0.0386 
JNJ 1.7996 0.034 0.0474 2.2994 0.0427 0.0514 * 
JPM 2.5092 0.0458 0.0483 1.6903 0.0293 0.0359 
KO 1.6876 0.0304 0.0499 * 2.1475 0.0389 0.0415 
MCD 2.5837 0.0538 0.0466 2.6687 0.0464 0.0422 
MMM 1.7916 0.0339 0.0582 ** 2.4056 0.0432 0.0627 ** 
MO 1.6887 0.0311 0.0452 1.444 0.025 0.0582 ** 
MRK 2.3549 0.0458 0.0502 * 2.4572 0.0475 0.0472 
MSFT 1.9089 0.0346 0.061 ** 2.4692 0.0425 0.0548 ** 
PG 1.4963 0.0282 0.0686 *** 1.8651 0.0365 0.0589 ** 
SBC 1.9351 0.0343 0.0564 ** 1.8632 0.0342 0.0454 
T 1.7711 0.0317 0.0786 *** 2.7409 0.0521 0.0496 * 
UTX 1.8064 0.0323 0.0612 ** 1.6092 0.0307 0.0581 ** 
WMT 1.9409 0.0381 0.0625 ** 1.9575 0.0364 0.0406 
XOM 2.4135 0.0424 0.0306 2.2692 0.0469 0.0252 
^DJI 4.6088 0.0881 0.0465 5.0953 0.105 0.0401 
Table 6-1: Close-High and Close-Low GoFs 

The Close-High Close-Low order-parameters for the DJI30 stocks are found to 

fall in the range from 1.4963  to 2.5837  for the High log-returns and from 1.444  

to 2.7409  for the Low log-returns. The index order-parameter is 4.6088  for the 

High log-returns and 5.0953  for the Low log-returns. Of High log-returns only 3  

out of the 30  stocks considered could be rejected at the 1% significance level. 

Of the Low log-returns only 1  out of the 30  stocks could be rejected at the 1% 

significance level. These results can be found in Table 6-1 and is graphically 

summarized in Figure 6-3. 
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Figure 6-3 Histograms of Order-Parameters for Close-High and Close-Low Pairs 

Figure 6-3 displays the histogram plots of the order-parameters for the set of 

DJI30 stocks and the DJI30 index considered. The order-parameters for the 

stocks are clustered together, whereas the order-parameters for the 

corresponding index log-returns tend to be “outliers”. Consequently, cross-

sectional aggregation of stocks must be non-stable. 

Next we compare the High and Low log-returns with each other to see if they 

also can be expressed a functions of each other. From Figure 6-4 we can 

deduce that the High and Low log-returns are mutually symmetric to each other, 

i.e. the order-parameters are very nearly identical can cannot be rejected at the 

10% level. The estimated values of the index order-parameters are 0.9167  for 

the Low-High pair and 1.1008  for High-Low pair. 
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Figure 6-4 Low-High and High-Low GoFs for DJI Index log-returns 

Figure 6-5 Low-High and High-Low GoFs for HPQ and IBM log-returns 
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Figure 6-5 shows the original ECDFs and the fitted ECDFs of the High and 

Lows for the two DJI30 stocks. In Table 6-2 the Low-High and High-Low order-

parameters for the DJI30 stocks are found to fall in the range from 0.6191  to 

1.5152  for the Low-High pairs and from 0.6459  to 1.7701  for the High-Low 

pairs. Of Low-High pairs only 2  out of the 30  stocks considered could be 

rejected at the 1% significance level. Of the High-Low pairs none out of the 30  

stocks could be rejected at the 1% significance level. 

Symbol High.est High.ses High.ks High.p Low.est Low.ses Low.ks Low.p 
AA 0.9154 0.0163 0.0358  1.0964 0.0186 0.0358  
AXP 1.0457 0.0187 0.0246 0.9541 0.0174 0.0247 
BA 0.7811 0.0138 0.0457 1.3169 0.0262 0.036 
C 1.4617 0.0306 0.0481 0.6459 0.0141 0.0383 
CAT 0.7547 0.0139 0.04 1.3774 0.0278 0.0283 
DD 0.6889 0.0119 0.0471 1.4923 0.0303 0.0333 
DIS 0.6719 0.012 0.0573 ** 1.6513 0.036 0.0429 
EK 0.6191 0.0114 0.0555 ** 1.6663 0.0325 0.0531 * 
GE 0.9192 0.0171 0.0331 1.0985 0.0218 0.0308 
GM 0.7759 0.0163 0.0325 1.3445 0.0279 0.0228 
HD 0.8963 0.016 0.0392 1.1286 0.0217 0.036 
HON 0.7099 0.0129 0.0713 *** 1.5355 0.0316 0.0492 * 
HPQ 0.9371 0.0176 0.0211 1.0718 0.0209 0.0204 
IBM 1.4383 0.0286 0.0337 0.7198 0.0126 0.0448 
INTC 1.0878 0.0195 0.0221 0.9177 0.0168 0.0213 
IP 0.6866 0.0127 0.0485 * 1.5415 0.0308 0.0322 
JNJ 0.7516 0.0152 0.0386 1.4205 0.033 0.0237 
JPM 1.5152 0.0294 0.0437 0.6595 0.0117 0.0451 
KO 0.7655 0.0144 0.0443 1.3548 0.0271 0.0319 
MCD 0.9401 0.0166 0.0326 1.0732 0.0246 0.0324 
MMM 0.7112 0.0135 0.0458 1.4665 0.0274 0.0329 
MO 1.1903 0.0254 0.0235 0.8453 0.015 0.0235 
MRK 0.9183 0.0156 0.0209 1.0912 0.0188 0.0206 
MSFT 0.7645 0.0146 0.036 1.3579 0.0283 0.0244 
PG 0.7666 0.015 0.0456 1.3373 0.0283 0.045 
SBC 1.0126 0.0179 0.0277 0.9871 0.0177 0.0279 
T 0.6127 0.0108 0.0707 *** 1.7701 0.0362 0.0424 
UTX 1.105 0.0192 0.0207 0.9026 0.0156 0.0216 
WMT 0.9655 0.0181 0.0416 1.0408 0.0209 0.0411 
XOM 1.0614 0.0202 0.0299 0.9386 0.0185 0.0292 
^DJI 0.9167 0.017 0.0257 1.1008 0.0281 0.0236 
Table 6-2: Low-High and High-Low GoFs 

It can also be noticed from Table 6-2 that the order estimates for the High to 

Low and the Low to High log-returns are inverses of each other. 
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This is expected from the relationship between the pairs defined as: 

(19) 
n

n:n
1/n
n:n

F (x)=F (x); and

F (x)=F(x)
 

The results indicate that the High and Low log-returns are similar but not 

identical. The “hidden” drivers of the Highs are similar to the Lows, but opposite 

in nature. The Low-High pairs are generally of a higher order than the High-Low 

pairs. This is depicted by the greater number of order values that are larger than 

1 0.  in the “Low.est” columns in Table 6-2. 

Figure 6-6 Histograms of Order-Parameters Low-High and High-Low Pairs 

In Figure 6-6 the mean order-parameter for the Low-High pairs is less than 1 0. , 

whereas the mean order-parameter for the High-Low pairs is more than 1 0. . 

This indicates that the Low log-returns are more fat-tailed than the High log-

returns. The “bust” effect is larger than the “boom” on average. 
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7 Conclusion 

Exact extreme value theory (EVT) states that there is an exact relationship 

between the parent distribution and the extreme value distribution of random 

variates. This study investigates this possibility for the distributional relationship 

between the Close, High and Low price changes or returns. The empirical 

cumulative distribution function (ECDF) is used to depict the parent Close-to-

Close distributions and the extreme-valued High-to-Close and Low-to-Close 

distributions. 

The findings indicate that: 

(i) there is an exact relationship between distributions of High and Low 

logarithmic returns and Close logarithmic returns; 

(ii) the magnitude of the order-parameters are fairly consistent across the 

DJI30 stocks; 

(iii) the magnitude of the order-parameters are fairly similar between High 

and Low logarithmic returns; 

(iv) the cross-sectional aggregation of the extreme logarithmic returns are 

not stable as indicated by the significant difference in the magnitudes 

of the outlying order-parameters of the DJI30 index log-returns. 

Implicit in the findings is the notion that the n-power of the transformed empirical 

distribution reflects the n-order of the trading horizon for daily returns. Given the 

parent empirical distribution, then the trading horizon implied by the results is 

greater than 1 and less than 3 days for the DJI30 stocks; i.e. if one desires to 

obtain the highest or the lowest daily price then one must be willing to has to 

trade over a 1-3 day horizon. The DJI30 index, however, has an order of 4-5 

days, indicating that the aggregation is not stable across cross-sections. 

Much research on exact distributions has been carried out to investigate the 

distribution of Close-to-Close returns. Analogously, it might be time now to 

investigate exact distributions for High-to-Close and Low-to-Close returns. 

Possibly, the exact distribution chosen for the extremals might help determine 

the appropriate exact model for the centrals (Close-to-Close returns) from 
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amongst the numerous distributions investigated in finance to-date (see 

Bachelier [1900], Roberts [1959] ,Mandelbrot [1963], Cootner [1964], Brada, 

Ernst, et al. [1966], Officer [1972], Barnea and Downes [1973], Blattberg and 

Gonedes [1974], Upton and Shannon [1979], Smith [1981], Bookstaber and 

McDonald [1987], Akgiray and Booth [1988], Hall, Brorsen, et al. [1989], Gray 

and French [1990], Madan and Seneta [1990], Gribbin, Harris, et al. [1992], 

Aggarwal and Aggarwal [1993], Lux [1996], McDonald [1996], McCulloch 

[1996], Mauleon and Perote [1998] , Bingham and Kiesel [2001], Theodossiou 

[2001], Andreou, Pittis, et al. [2001], Aparicio and Estrada [2001], Harris and 

Kucukozmen [2001], Yu [2001], Knight and Satchell [2001], Bibby and 

Sorensen [2002], Gabaix, Gopikrishnan, et al. [2003], Shang and Tadikamalla 

[2004] and many others) by investigating whether the extreme value transforms 

of the proposed parent distributions are able to fit the extremes. This additional 

constraint on the extremals or the extreme-value distributions should narrow the 

range of distributional fits for the parent or Close-to-Close distributions of asset 

log-returns. 

The findings shed new light on the statistical behaviour of financial asset 

returns, especially the High and Low log-returns. The multivariate relationships 

identified in this paper could be used to improve our understanding of the 

returns generation process of financial assets. 
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