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Abstract

Recent literature has addressed how product creation ampli�es economic �uctua-
tions via the love of variety. Yet, the empirical evidence on variety e¤ects is sparse.
The current paper demonstrates that decreasing returns in the variety-level production
technology, which leads to increasing marginal costs, can similarly amplify business cy-
cles. An expansion of the �rm�s product scope reduces marginal costs and gives an
incentive to produce multiple products even if the variety e¤ects are entirely absent.
The e¢ ciency gains from adjusting product scopes makes the economy more suscep-
tible to sunspot equilibria. The model is estimated via Bayesian methods and data
favours mild decreasing returns with animal spirits explaining a signi�cant fraction of
U.S. business cycles.
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1 Introduction

An important line of research has demonstrated how product creation via the entry of �rms

can amplify shocks and be a source of sunspot equilibria that leads to �uctuations driven by

self-ful�lling beliefs. The two central mechanisms that produce these results are countercycli-

cal markups and the love of variety.1 More recently, Minniti and Turino (2013) and Pavlov

and Weder (2017) extend these entry models by utilizing variety e¤ects as an incentive for

�rms to produce multiple products. Yet, the empirical evidence on the size of these e¤ects

is sparse - casting doubt on the ability of this mechanism to explain the contribution of

product creation on the business cycle. The current paper addresses this issue by laying out

a model where intra-�rm product creation ampli�es business cycles and makes the economy

more susceptible to sunspot equilibria even in the complete absence of the love of variety.

Speci�cally, it investigates the role of increasing marginal costs in a general equilibrium

model with endogenous entry and oligopolistic multi-product �rms.2 When the production

technology of intermediate good �rms has decreasing returns, marginal costs increase with

output per variety. This gives �rms an incentive to produce multiple products even in the

absence of variety e¤ects.3 The e¢ ciency gains of adjusting product scopes ampli�es eco-

nomic �uctuations and creates sunspot equilibria at more realistic situations, which are not

attainable with mono-product �rms. Hence, technological decreasing returns and increasing

marginal costs provide a novel mechanism for product creation within �rms and for generat-

ing indeterminacy. This is in stark contrast to Benhabib and Farmer (1994) and Farmer and

Guo (1994), where indeterminacy is a result of technological increasing returns for mono-

product �rms in the absence of entry. Finally, the model is estimated by Bayesian methods

and the results support recent �ndings that belief shocks (i.e. animal spirits, sunspots)

explain a signi�cant fraction of U.S. business cycles.

The way indeterminacy arises is most easily understood in terms of the equilibrium wage-

hours locus. Product creation and countercyclical markups generate an endogenous e¢ ciency

1For example, under the love of variety, Devereux et al. (1996) assess the e¤ect of technology shocks, while
Pavlov and Weder (2012) examine the conditions for local indeterminacy. Jaimovich (2007) investigates how
indeterminacy can be generated by oligopolistic �rms with countercyclical markups.

2Bils (1987) and Shea (1993) show evidence of procyclical short-run marginal cost. Findings on U.S.
returns to scale by Burnside (1996) and Basu and Fernald (1997) point against decreasing marginal costs.

3There are other channels for product creation to a¤ect marginal costs. For example, an alternative
modelling approach would be to have spillovers resulting from shared inputs among di¤erent products.
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wedge which makes this locus upwardly sloping. If the locus is steeper than the labor supply

curve, then sunspots can act as self-ful�lling expectation shocks. For example, if people

become optimistic about the future path of income, then the wealth e¤ect shifts the labor

supply curve upwards, raising employment and output - thereby con�rming the initial belief.

More precisely, when the labor supply curve shifts up due to optimistic expectations, the

higher demand for output and pro�t opportunities induce �rm entry. Greater competition

pushes markups downwards and causes �rms to expand output. Since marginal costs would

increase with production, �rms choose to expand their product scopes rather than ramp up

the production of existing varieties. The fall in output per variety due to the cannibalization

e¤ect (new varieties reducing the demand for existing varieties) then leads to falling marginal

costs. Together, the e¢ ciency gains of product creation and falling markups shift out the

labor demand curve far enough to allow the initial belief about higher income to become

self-ful�lling.

On the theoretical side, the paper is most closely related to Minniti and Turino (2013)

and Pavlov and Weder (2017). The former investigates the role of the product scope in

magnifying fundamental shocks, while the latter shows how the multi-product structure

makes the economy more susceptible to sunspot equilibria. Feenstra and Ma (2009) use a

similar model in the context of international trade. In contrast, the current paper does not

utilize variety e¤ects. Instead, increasing marginal costs are an incentive for �rms to expand

their product scopes.

The empirical approach and results are closely connected to Pavlov and Weder (2017)

and Dai et al. (2019), with the latter employing �nancial frictions to generate indetermi-

nacy. Both use Bayesian methods to estimate indeterminate models and their results on the

importance of self-ful�lling beliefs parallel the �ndings of the current paper. In a related

work, Lubik (2016) estimates a real business cycle model with productive externalities and

�nds evidence for close to constant returns to scale in aggregate U.S. data.

The focus on multi-product �rms is motivated by recent empirical work. Bernard et al.

(2010) �nd that about 90 percent of total sales in the manufacturing sector are made by

multi-product �rms. Broda and Weinstein (2010) report that over 90 percent of product

creation and destruction occurs within �rms and that the contribution of product scope

adjustments within �rms is at least as important to the evolution of aggregate output as
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�rm entry and exit.

The paper proceeds as follows. Section 2 outlines the model. Section 3 analyzes the

local dynamics. Capital utilization is introduced in Section 4 and the model is estimated in

Section 5. Section 6 concludes.

2 Model

The arti�cial economy is based on the multi-product model of Minniti and Turino (2013).

There are two key di¤erences. First, the love of variety e¤ects are entirely absent in aggre-

gating intermediate goods into �nal goods. Second, eventual decreasing returns to scale in

the variety-level production technology imply that marginal costs increase with production.

Firms therefore take into account the e¤ect of their product scope decision on marginal

costs. Time evolves continuously to make comparisons with previous studies on indetermi-

nacy straightforward.

2.1 Final goods

Final output, Yt, is produced under perfect competition using the range of intermediate

inputs supplied by Mt multi-product �rms. This is done via two nested CES aggregators.

The �rst combines the varieties from an individual �rm

Yt(i) = Nt(i)
1

1��

 Z Nt(i)

0

yt(i; j)
��1
� dj

! �
��1

� > 1 (1)

where Nt(i) is �rm i�s product scope, yt(i; j) is the amount of the unique intermediate good

j produced by �rm i, and � is the elasticity of substitution. The �rm-composite goods are

then aggregated to form the �nal good

Yt =M
1

1��
t

 
MtX
i=1

Yt(i)
��1
�

! �
��1

: (2)

Note that the CES aggregators have been formed to eliminate the love of variety.4 Hence,

unlike in Minniti and Turino (2013) where variety e¤ects were necessary for the existence

4As we will see later, an intermediate good �rm will charge the same price for all of its varieties and
produce them in equal quantities. Together with the elimination of the love of variety, this implies that
di¤erences in intra-�rm and inter-�rm elasticities of substitution are irrelevant for dynamics.
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of multi-product �rms, the current model has no increasing returns in the aggregation of

products.

The pro�t maximization problem yields

yt(i; j) =

�
pt(i; j)

Pt

���
Yt

MtNt(i)
(3)

where the aggregate price index satis�es

Pt =M
1

��1
t

 
MtX
i=1

Pt(i)
1��

! 1
1��

: (4)

In addition, we have the price index for �rm i�s goods

Pt(i) = Nt(i)
1

��1

 Z Nt(i)

0

pt(i; j)
1��dj

! 1
1��

: (5)

2.2 Intermediate good �rms

Each �rm chooses the number of di¤erent products to produce and the prices to sell them

at. This task is solved in two stages. In the �rst, �rms decide their product scopes. In the

second stage, �rms act as Bertrand competitors in the product market and set their prices.

The model is solved by backward induction using the subgame Nash perfect equilibrium

concept. The number of active �rms is determined by a zero-pro�t condition each period.

Since all �rms have the same technology and behavior is governed by identical optimality

conditions, a symmetric Nash equilibrium emerges.

Intermediate goods are produced using capital, kt(i; j), and labor, ht(i; j), that are sup-

plied on perfectly competitive factor markets. The production technology has decreasing

returns and involves two �xed costs. The variety-level �xed cost, �, restricts the amount of

varieties a �rm will produce. The �rm-level �xed cost, �f , provides economies of scope and

determines the number of active �rms via a zero-pro�t condition. Hence, a �rm�s output is

given byZ Nt(i)

0

yt(i; j)dj =

Z Nt(i)

0

�
(kt(i; j)

�ht(i; j)
1��)� � �

�
dj � �f �; � 2 (0; 1): (6)

The presence of decreasing returns via � < 1 makes it pro�table for �rms to produce multiple
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products.5 Each �rm sets prices to maximizes pro�ts

�t(i) =

Z Nt(i)

0

pt(i; j)yt(i; j)� wtht(i; j)� rtkt(i; j)dj (7)

where wt and rt are the labor and capital rental rates. As in Yang and Heijdra (1993),

intermediate good �rms are large enough to take the aggregate price index into consideration

when making their pricing decision.6 Appendix A.1 shows that a �rm charges the same price,

pt(i), for all of its varieties and the markup becomes

�t(i) �
pt(i)

mct(i)
=

�[1� �t(i)]

�[1� �t(i)]� 1
where mct(i) is the marginal cost and �t(i) � Pt(i)Yt(i)=(PtYt) is �rm i�s market share which

increases in the number of goods Nt(i). In contrast to Minniti and Turino (2013) and others,

this does not arise from the love of variety but instead is due to the e¤ect of the product

scope on the �rm�s marginal costs. If the production technology had constant returns to

scale (minus the �xed costs), the marginal cost of producing an additional unit of a variety

would be independent of the scale of production. Firms would take the marginal cost as given

when making their product scope decisions. Pro�ts would be decreasing in Nt(i) because

of the variety-level �xed cost, �; and �rms would only produce a single product. However,

since the production technology has decreasing returns, the marginal cost is increasing in

the scale of production:

mct(i) =

�
yt(i) + �+

�f
Nt(i)

� 1��
� w1��t r�t
�(1� �)1����

:

Firms then need to take into account how an introduction of a new product a¤ects marginal

costs through the demand for their varieties.

Firms determine their optimal number of products by maximizing pro�ts with respect

to Nt(i) by taking into account the e¤ect on its own and other �rms�pricing decisions (see

Appendix A.2). The �rst-order condition is

mct(i)�� =

 
1� � + ��

�
pt(i)�mct(i)

pt(i)

�2!
PtYt

@�t(i)

@Nt(i)
(8)

��[Nt(i)�+ �f ]
@mct(i)

@Nt(i)
+ Yt�t(i)

�
pt(i)�mct(i)�

pt(i)

�
@Pt
@Nt(i)

:

5More precisely, returns at the variety level are initially increasing due to the �xed cost � but eventually
decreasing due to � < 1:

6Under monopolistic competition where �rms take the aggregate price index as given, the markup and
product scope are constant over the business cycle (see Appendix A.3).
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Firms equate the cost of producing a new variety (the left-hand side) with the gains on the

right-hand side. The �rst two terms on the right-hand side are due to the presence of decreas-

ing returns: introducing a new product increases the �rm�s market share, @�t(i)=@Nt(i) > 0,

due to the e¤ect on marginal costs, @mct(i)=@Nt(i) < 0. The last term represents that

introducing a new product reduces the aggregate price index, @Pt=@Nt(i) < 0, which from

(3) leads to a lower demand for �rm i�s products.

2.3 Symmetric equilibrium

In the symmetric equilibrium, each �rm produces the same number of varieties, Nt(i) = Nt,

charges the same price, pt(i) = pt = 1, and has the same market share �t(i) = 1=Mt. Using

(1) and (2), output per variety is

yt =
Yt

NtMt

: (9)

The markup simpli�es to

�t =
�(Mt � 1)

�(Mt � 1)�Mt

: (10)

Since new entrants reduce �rms�market shares, the markup is countercyclical. Note that as

the number of �rms becomes large, the steady state markup converges to its monopolistic

competition level of � = �=(� � 1): Furthermore, the steady state version of this equation
can be written as

M = 1 +
�

�(� � 1)� �

and calibrating the steady state markup � and elasticity � pins down the number of �rms.

An increase in the �rm�s product scope reduces its own price and the prices of other �rms:

to lower price competition, �rms under-expand their product scopes in comparison to the

case of monopolistic competition where such strategic linkages are absent. The extent of this

under-expansion can be seen by substituting @�t(i)=@Nt(i); @mct(i)=@Nt(i) and @Pt=@Nt(i)

into (8) and rearranging for the product scope:

Nt =
1� �

�

�t
�

Yt
Mt

�t:

The function �t (see Appendix A.2) is less than one and is increasing in Mt: the strategic

e¤ect of the product scope decision becomes less important as the number of �rms increases

and this gives an incentive to introduce new varieties. When Mt becomes very large this
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term approaches unity and the markup converges to its monopolistic competition level of

�=(� � 1). Intuitively, as the number of �rms grows, the impact on the market share of
adding an additional variety becomes smaller, which has then a smaller impact on the price

of the variety. The dynamics of the product scope are thus similar to Minniti and Turino

(2013), but instead of the love of variety being the incentive for product creation, it is the

e¢ ciency gains of reducing marginal costs. When �rms want to expand their output it is

e¢ cient to introduce new products, rather than ramp up the production of existing varieties

whose production technology is subject to diminishing returns.

The number of �rms can be determined from the zero pro�t condition:

Mt =
�t � �

�

Yt
�Nt + �f

: (11)

To obtain aggregate output, �rst note that (6) can be written as

yt = k��t h
�(1��)
t � ��

�f
Nt

:

Using this together with (9) and (11) gives

Yt = �
M1��

t N1��
t

�t
K��
t H

�(1��)
t (12)

where Kt =MtNtkt and Ht =MtNtkt. The term
M1��
t N1��

t

�t
can be interpreted as an endoge-

nous e¢ ciency wedge. Combining (11) and (12), output can be written as

Yt =
�

�t
K�
t H

1��
t

�
1� �

�t

� 1��
�
�

Nt

�Nt + �f

� 1��
�

: (13)

Since markups are countercyclical, the �rst term in brackets implies that decreasing returns

(� < 1) have a contractionary e¤ect on the e¢ ciency wedge. However, the second term in

brackets implies that an increase in product scopes has an expansionary e¤ect. This latter

e¤ect outweighs the former and as we will see in Section 3, procyclical product scope makes

the economy more susceptible to sunspot equilibria.

Finally, the equilibrium real wage and rental rate are given by

wt = (1� �)
Yt
Ht

and rt = �
Yt
Kt

:
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2.4 Agents

The representative agent derives lifetime utility from the function

U =

Z 1

0

e��tu(Ct; Ht)dt � > 0:

Here, � denotes the subjective rate of time preference and period utility takes the functional

form

u(Ct; Ht) = lnCt � �
H1+�
t

1 + �
� > 0, � � 0

where � is the inverse of the Frisch labor supply elasticity. The agents own the capital stock

and sell labor and capital services. The period budget is constrained by

wtHt + rtKt +�t � Xt + Ct

where �t denotes potential pro�ts and investment, Xt, is added to the capital stock such

that:

_Kt = Xt � �Kt 0 < � < 1:

Time derivatives are denoted by dots and � stands for the constant rate of physical depreci-

ation of the capital stock. The solution to the maximization problem gives

�H�
t =

wt
Ct

and
�
Ct

Ct
= rt � � � �:

which represent the agents�leisure-consumption trade-o¤ and the intertemporal Euler equa-

tion. In addition the transversality condition must hold.

3 Dynamics

This section analyzes the local dynamic properties of the multi-product model and com-

pares it to the mono-product model. The equilibrium conditions are log-linearized and the

dynamical system is arranged to �
_Kt=Kt

_Ct=Ct

�
= J

�
K̂t

Ĉt

�
:
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Hatted variables denote percent deviations from their steady-state values and J is the 2� 2
Jacobian matrix of partial derivatives. Note that Ct is a non-predetermined variable and

that Kt is predetermined. Indeterminacy requires both roots of J to be negative, that is

DetJ>0>TrJ. For easier comparison to previous studies, the parameters are calibrated at a

quarterly frequency as � = 0:3, � = 0:01, � = 0:025 and � = 0.

As explained in the previous section, the current model requires decreasing returns, � < 1;

for �rms to have an incentive to produce multiple products. Figure 1 presents the indetermi-

nacy zones for the mono-product model with � = 1 and the multi-product model with � = 0:8

and 0.9. Lower variety-level returns to scale increase the size of the indeterminacy zone and

sunspot equilibria occur for lower levels of market power. The mono-product model is virtu-

ally identical to Jaimovich (2007) if, in his paper, the intersectoral elasticity of substitution is

set to unity. Indeterminacy is driven entirely by the e¤ect of the countercyclical markup on

the e¢ ciency wedge. While not shown in the �gure, decreasing returns in the mono-product

model reduce the plausibility of indeterminacy. The reason is that falling markups increase

the output of �rms and then the diminishing returns have a negative e¤ect on the e¢ ciency

wedge (recall the �rst bracketed term in equation 13). As � falls towards �=(��1) the num-
ber of �rms approaches in�nity and the markup converges to its monopolistic competition

level of �=(� � 1): In this case, the markup is constant, the dynamics converge to that of
the model with monopolistic competition, and indeterminacy cannot exist. Higher �; on the

other hand, increases the cyclicality of the markup and indeterminacy is thus possible for a

lower level of market power.7

When decreasing returns are present, marginal costs increase with output per variety

and �rms have an incentive to produce multiple products. Here, decreasing returns amplify

�uctuations and reduce the level of market power required for indeterminacy. This stands

completely in contrast to how decreasing returns a¤ect the mono-product model. Why is

this the case? First, note that if markups were constant, the product scope, output per �rm

and output per variety would also be constant: � would have no e¤ect on local dynamics (see

Appendix A.3). Under oligopolistic competition, however, the entry of new �rms reduces

existing �rms�market shares and encourages them to expand their product scopes. Due

7The markup elasticity (@�=@M)(M=�) = (� � 1)(�(1 � �) + �)=� < 0 is increasing (in absolute value)
in � and �, and approaches zero as � approaches �=(� � 1):
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Figure 1: Mono and multi-product models. Shaded regions represent areas of indeterminacy.

to the cannibalization e¤ect (new products reducing demand for existing products), �rms

reduce production for each of their varieties, which then reduces their marginal costs. This

e¢ ciency gain - �rms do not run into diminishing returns as quickly as their mono-product

counterparts - acts as an additional mechanism that ampli�es business cycles. That is, a

low number of �rms leads to two ine¢ ciencies: high markups and low product scopes (with

high output per variety). Firm entry reduces these ine¢ ciencies and expands production

possibilities.

4 Capital utilization

The last section has demonstrated that when marginal costs increase with the level of pro-

duction, the possibility of sunspot equilibria increases when �rms can choose their product

scopes. However, it could be argued that the level of market power required for indetermi-

nacy is on the higher end of empirical estimates. This section addresses the issue by showing

that the levels of market power can be reduced substantially by introducing variable capital
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Figure 2: Multi-product model with variable capital utilization, � = 0:9:

utilization. Each intermediate good �rm i now operates the production technologyZ Nt(i)

0

yt(i; j)dj =

Z Nt(i)

0

�
(U�

t kt(i; j)
�ht(i; j)

1��)� � �
�
dj � �f

where Ut stands for the utilization rate of capital set by its owners. Capital evolves according

to

_Kt = Xt � �tKt = Xt �
1

%
U%
t Kt % > 1

and the optimal rate of utilization follows

rt = U%�1
t :

The calibration remains the same, and as in Wen (1998), the steady state �rst-order condi-

tions pin down % = (�+ �)=� = 1:4: Figure 2 demonstrates how the introduction of variable

capital utilization signi�cantly reduces the level of market power and the elasticity of substi-

tution that are required for indeterminacy. This occurs because higher utilization, like lower

markups, increases the demand for labor.

To gain further understanding about the e¤ect of sunspots and the dynamics of the model,

the impulse responses of the main variables are plotted in Figure 3. The sunspot shock is
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modelled as an expectation shock to consumption that raises it one percent above its steady

state level. This discrete-time version of the model is calibrated as � = 0:3, � = 0:025, � = 0,

� = 0:9; and a discount factor at � � (1+�)�1 = 0:99. The steady markup is set to � = 1:3;
which lies in the middle of value-added markup estimates for the US (see Jaimovich, 2007).

Finally, as in Minniti and Turino (2013), the elasticity of substitution is set to � = 7:5. The

impulse response functions reveal that both net product creation and net business formation

positively comove with output, with the former being more volatile than the latter. We can

also observe the cannibalization e¤ect: an introduction of a new variety reduces the demand

for existing varieties, that is, output per variety drops. The countercyclically �uctuating

markup, together with the e¢ ciency gains of product creation on marginal costs leads to

an upwardly sloping wage-hours locus that enables the propagation of self-ful�lling beliefs

described earlier.

10 20 30
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1.5
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10 20 30
­5
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10 20 30
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20
investment

10 20 30
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Figure 3: Impulse responses to a consumption (sunspot) shock (percent deviations from the
steady state).
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5 Estimation

So far, this paper has shown that under increasing marginal costs, intra-�rm product creation

can generate indeterminacy under more plausible situations. The current section estimates

the model in log-linear form to see if it can replicate the basic business cycle facts by compar-

ing its second moments to the US quarterly time series counterparts (see Appendix A.4 for

the data sources). The Bayesian estimation procedure is based on Farmer et al. (2015) and

largely follows Pavlov and Weder (2017). Finally, a comparison is made to the mono-product

model where marginal costs can be decreasing.

5.1 The model

The discrete-time model builds upon the capital utilization economy from Section 4. In ad-

dition to sunspots, fundamental demand and supply disturbances are sources of uncertainty.

On the supply side, exogenous labor augmenting technological progress, At, a¤ects all

�rms equally and implies that aggregate output is given by

Yt =
(UtKt)

��(AtHt)
(1��)�

�t
:

It is non-stationary and follows the process

lnAt = lnAt�1 + ln at

where

ln at = (1�  A) ln a+  A ln at�1 + "At 0 �  A < 1:

Here ln a is the average growth rate of technology and "At is an i.i.d. disturbance with variance

�2A:
8

The �rst demand disturbance is a preference shock to the agent�s utility of consumption

that leads to an urge to consume as in Baxter and King (1991). Period utility takes the form

u(Ct; Ht) = ln(Ct ��t)� �
H1+�
t

1 + �

where a positive shock to �t increases the marginal utility of consumption and causes agents

to reduce leisure for higher consumption. It follows the process

�t =  ��t�1 + "�t 0 �  � < 1

8Detrended output is given by ~Yt = Yt=A
�
t and Ŷt = ln ~Yt � ln ~Y ; where ~Y is the steady state value.
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with the shock variance �2�: The shock drives the economy�s labor wedge and can also be

interpreted as a reduced form way of capturing changes to monetary policy, taxes, or labour

market frictions.

The second demand disturbance is a shock to government expenditures, Gt, �nanced by

lump sum taxes. Government spending follows a stochastic trend

Agt = (A
g
t�1)

 ag(At�1)
1� ag

where  ag governs the smoothness of the trend relative to the trend in output. Detrended

government spending is gt � Gt=(A
g
t )
� and follows the process

ln gt =  g ln gt�1 + "gt 0 �  g < 1

with the shock variance �2g:

Finally, as in Pavlov andWeder (2017), the non-fundamental sunspot shock is modelled as

an expectation error to output that is unrelated to any fundamental changes in the economy.9

Since the economy�s response to fundamental shocks is not uniquely determined (see Lubik

and Schorfheide, 2003 and 2004), the behavior of output is then

Ŷt = Et�1Ŷt + 
A"
A
t + 
�"

�
t + 
g"

g
t + "st

where parameters 
A, 
� and 
g determine the e¤ect of technology, preference and govern-

ment shocks on output and "st is an i.i.d. sunspot shock with variance �
2
s.

5.2 Bayesian estimation

The model is estimated via Bayesian methods using the quarterly real per capita growth

rates of output, consumption, investment, government spending and the logarithm of per

capita hours worked from 1955:I-2007:IV as observables.10 Since the model is very small

scale and lacks �nancial frictions, the series are truncated right before the Great Recession.

The measurement equation is thus266664
lnYt � lnYt�1
lnCt � lnCt�1
lnXt � lnXt�1
lnGt � lnGt�1
lnHt � lnH

377775 =
2666664

Ŷt � Ŷt�1 + �ât
Ĉt � Ĉt�1 + �ât
X̂t � X̂t�1 + �ât

Ĝt � Ĝt�1 + �(âgt � âgt�1 + ât)

Ĥt

3777775+
266664
gy
gy
gy
gy
0

377775+
266664
"m:e:t

0
0
0
0

377775
9Results are robust to the choice of expectation error (Farmer et al. 2015).
10Unfortunately, no (long) time series are available for the number of �rms and the product scope.
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where gy = 0:0046 is the average quarterly growth rate of per capita real GDP, a
g
t � Agt=At =

(agt�1)
 aga�1t is the ratio between the government spending and technology trends, "m:e:t is a

measurement error restricted to account for not more than ten percent of output growth in

the data and lnH is the logarithm of the average hours worked over the sample period. The

share of government expenditures in output, G=Y , is set to 0:21, which is consistent with

the data sample. The parameters that are calibrated remain the same as in the previous

section: � = 0:3, � = 0:025, � = 0, � = 0:99, and � = 1:3.11

The estimated parameters include the degree of variety-level decreasing returns �, the

elasticity of substitution � and the parameters for the stochastic processes:  A,  �,  g,

 ag, �s, �A, ��, �g, 
A, 
�, 
g; �
m:e:. Endogenous priors are used to prevent overly high

estimated model variances (Christiano et al. 2011). Table 1 presents the initial prior and

posterior distributions. The returns to scale parameter � is bounded by unity at the upper

end since increasing returns at the variety-level would lead to �rms producing only one

good (that is, this restriction is necessary to keep the product scope strictly positive). The

mean is centered at 0.95 as studies such as Burnside (1996) and Basu and Fernald (1997)

have shown evidence for close to constant returns to scale. A normal distribution with a

mean of 10 is assumed for � (approximately the halfway point between the two elasticities

estimated by Broda and Weinsten, 2010). Given the calibrated steady state markup, this

elasticity is bounded by �=(��1) = 4:33 at the lower end to keep the number of �rms strictly
positive.12 A wide uniform distribution is employed for the expectation error parameters 
A,


�, and 
g. Finally, the shock processes follow the standard inverse gamma distribution.

The Metropolis-Hastings algorithm is employed to obtain 500,000 draws from the posterior

mean for each of the �ve chains. Half of the draws are discarded and the scale in the jumping

distribution is adjusted to achieve a 25-30 percent acceptance rate for each chain.

Table 1 shows that the parameters are precisely estimated with data favouring mild de-

creasing returns. As discussed in previous sections, this results in a substantial ampli�cation

mechanism coming from product scope variations. The relatively high value for � indicates

an elastic markup that serves as another shock ampli�cation channel. The remaining esti-

11This parameterization is standard in the sunspot literature. The steady state markup is set around
the middle of value-added markup estimates for the U.S. (see Jaimovich, 2007). Appendix A.5 presents
robustness checks for alternative markup calibrations.
12Since � and � jointly determine the markup elasticity, identi�cation issues prevented the estimation of

both parameters.
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Table 1: Prior and posterior distributions
Prior Posterior

Name Range Density Mean Std. Dev. Mean 90% Interval
� (0,1) Normal 0.95 0.05 0.931 [0.917,0.945]
� [4.34,+1] Normal 10 2 17.679 [15.895,19.450]
 A [0,1) Beta 0.5 0.2 0.007 [0.001,0.012]
 � [0,1) Beta 0.5 0.2 0.989 [0.984,0.993]
 g [0,1) Beta 0.5 0.2 0.991 [0.987,0.995]
 ag [0,1) Beta 0.5 0.2 0.975 [0.961,0.990]
�s R+ Inverse Gamma 0.1 Inf 0.529 [0.501,0.556]
�A R+ Inverse Gamma 0.1 Inf 0.739 [0.695,0.783]
�� R+ Inverse Gamma 0.1 Inf 0.457 [0.440,0.475]
�g R+ Inverse Gamma 0.1 Inf 1.112 [1.047,1.179]
�m:e: [0; 0:28] Uniform 0.14 0.081 0.280 [0.279,0.280]

A [-3,3] Uniform 0 1.732 -0.607 [-0.684,-0.528]

� [-3,3] Uniform 0 1.732 0.774 [0.657,0.890]

g [-3,3] Uniform 0 1.732 0.333 [0.285,0.381]

This table presents the prior and posterior distributions for model parameters and shocks. Inf
implies two degrees of freedom for the inverse gamma distribution. Standard deviations are in
percent terms.

mates are consistent with previous studies. Preference and governments shocks are highly

persistent and cause an increase in output. The persistence of the permanent technology

shock is close to zero with a resulting fall in detrended output consistent with the determinate

plain real business cycle model.

Table 2 reports the second moments of the main macroeconomic aggregates and reveals

that the model �ts the data well. When considering growth rates, the model reproduces the

empirical volatility of output growth but slightly overpredicts the variance of the other series.

When HP �ltered, the model slightly underpredicts all series except for government spending

which it matches perfectly.13 The relative volatilities and correlations are consistent with

the data. Due to the rich internal propagation mechanism of the indeterminate model, the

autocorrelation functions (ACF) show persistence in the growth rates despite the lack of the

many real frictions employed in the literature.

Table 3 displays the variance decomposition which reveals the relative contribution of

each of the four shocks to the macroeconomic aggregates. Consistent with the �ndings of

Pavlov and Weder (2017) and Dai et al. (2019), sunspots explain a signi�cant fraction of

U.S. business cycle: over 40 percent of output �uctuations when considering growth rates

13A Hodrick-Prescott �lter with a smoothing parameter of 1600 was applied.
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Table 2: Business cycle dynamics
Data Model

x �x �(x; ln(Yt=Yt�1)) ACF �x �(x; ln(Yt=Yt�1)) ACF
ln(Yt=Yt�1) 0.89 1 0.29 0.91 1 0.16
ln(Ct=Ct�1) 0.50 0.51 0.22 0.73 0.62 0.03
ln(Xt=Xt�1) 2.10 0.71 0.53 2.68 0.80 0.31
ln(Gt=Gt�1) 1.08 0.26 0.07 1.12 0.41 0.00
ln(Ht=H) 4.05 0.05 0.98 4.90 0.12 0.99

�(x; Y ) �(x; Y )
Yt 1.49 1 0.84 1.32 1 0.80
Ct 0.81 0.80 0.84 0.76 0.71 0.73
Xt 4.37 0.89 0.89 3.92 0.91 0.82
Gt 1.44 0.10 0.76 1.44 0.36 0.72
Ht 1.73 0.86 0.90 0.99 0.99 0.80

Business cycle statistics for the arti�cial economy are calculated at the posterior mean. �x denotes
the standard deviation of variable x, �(x; Y ) is the correlation of variable x and output, and ACF
is the �rst order autocorrelation coe¢ cient. The last �ve rows are from HP �ltered series.

Table 3: Unconditional variance decomposition (in percent)

ln
�

Yt
Yt�1

�
ln
�

Ct
Ct�1

�
ln
�

Xt

Xt�1

�
ln
�

Gt

Gt�1

�
ln
�
Ht

H

�
Yt Ct Xt Gt Ht

"st 42.86 2.71 71.84 0 20.68 33.83 4.40 60.96 0 39.10
"At 15.21 42.33 12.91 0.49 14.99 36.72 16.43 26.97 0 25.81
"�t 20.66 53.54 7.62 0 33.61 14.29 77.52 5.99 0 17.13
"gt 21.27 1.42 7.63 99.51 30.73 15.16 1.65 6.07 100 17.96

Variance decompositions are performed at the posterior mean. The last �ve columns are calculated
from HP �ltered series.

and one third when the series are HP �ltered. Investment is even more sunspot driven while

the fundamental shocks better explain the behavior of consumption and hours worked.

5.3 Mono-product model comparison

The previous section has shown that a multi-product model with mild variety-level decreasing

returns to scale does a good job in replicating the regularities of the U.S. business cycle. Due

to the small scale nature of the model, the returns to scale parameter � was restricted to be

less than unity in order to preserve the multi-product structure and a strictly positive product

scope. The current section compares the performance of the model against a mono-product

model with potentially increasing returns to scale. The mono-product economy is e¤ectively

the model of Jaimovich (2007) with variable technological returns to scale. Here, increasing

returns to scale make the labour demand curve �atter and make indeterminacy more plausible
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Table 4: Posterior distributions for the mono-product model
Name Mean 90% Interval
� 1.261 [1.252,1.268]
� 14.224 [11.759,16.593]
 A 0.130 [0.118,0.143]
 � 0.989 [0.985,0.993]
 g 0.992 [0.988,0.995]
 ag 0.958 [0.940,0.978]
�s 0.536 [0.509,0.561]
�A 0.444 [0.424,0.463]
�� 0.463 [0.446,0.481]
�g 1.114 [1.047,1.179]
�m:e: 0.280 [0.279,0.280]

A -0.624 [-0.738,-0.504]

� 0.897 [0.795,1.000]

g 0.338 [0.291,0.385]

Table 5: Model Comparison
Multi-product Mono-product

Prior Model Probability 0.5 0.5
Log-data density 3026.28 3010.97
Posterior Model Probability 1.00 0.00

This table compares the empirical �t of the multi-product and mono-product models. Posterior
probabilities have been calculated based on the output of the Metropolis-Hastings algorithm (log
marginal densities based on the modi�ed harmonic mean).

as in Benhabib and Farmer (1994). Table 4 presents the posterior estimates. Apart from �;

which no longer has the upper bound of unity, all prior distributions are identical to Table 1.

As expected, to compensate for the lack of the product scope ampli�cation mechanism, the

estimated model has moderate increasing returns at the variety-level, implying decreasing

marginal costs. However, the other parameter estimates are not substantially di¤erent.

Second moments and variance decompositions (including the role of sunspots) are also very

similar to the multi-product model (and are not presented here to conserve space). Table 5

presents a comparison using log-data densities between the two models. While the log-data

densities are not too far apart, data clearly favours the multi-product economy.

6 Conclusion

Previous studies have shown that product creation within �rms can be a source of business

cycle ampli�cation and sunspot equilibria. Yet, this result and the existence of multi-product
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�rms relies on the love of variety, for which empirical evidence is limited. The current paper

addresses this issue. It investigates the role of increasing marginal costs in a dynamic gen-

eral equilibrium model without the love of variety. Marginal costs increase with output per

variety due to decreasing returns in the production technology. Product scope expansions

then reduce marginal costs and �rms have an incentive to produce multiple products. The

e¢ ciency gains of adjusting product scopes provides an ampli�cation mechanism that creates

sunspot equilibria at more realistic situations, which are not attainable with mono-product

�rms. Hence, increasing marginal costs provide an additional and novel mechanism for

product creation that makes it easier for indeterminacy to occur. The estimated indetermi-

nate model generates arti�cial cycles that closely resemble empirically observed �uctuations.

The estimation supports recent �ndings that non-fundamental belief shocks (animal spirits)

explain a signi�cant portion of U.S. business cycles.
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A Appendix

A.1 Markups

This Appendix derives the intermediate good �rm�s optimal markup. Taking logs of (3)

gives

ln yt(i; j) = �� ln pt(i; j) + � lnPt + lnYt � lnNt(i)� lnMt:

Then using (4) and (5), the price elasticity of demand is

@ ln yt(i; k)

@ ln pt(i; j)
= ��|{z}

absent for k 6=j

+
�

Nt(i)Mt

�
pt(i; j)

Pt

�1��
: (A.1)

Firm i maximizes pro�t (7) subject to the constraint (6):

L =

Z Nt(i)

0

pt(i; j)yt(i; j)� wtht(i; j)� rtkt(i; j)dj

+�t

 Z Nt(i)

0

�
zt(kt(i; j)

�ht(i; j)
1��)� � �

�
dj � �f �

Z Nt(i)

0

yt(i; j)dj

!
:

Optimality gives

@L
@pt(i; j)

= yt(i; j) +

Z Nt(i)

0

[pt(i; j)� �t]
@yt(i; j)

@pt(i; j)
dj = 0 (A.2)

22



@L
@ht(i; j)

= �wt + �t�(1� �)ztkt(i; j)
��ht(i; j)

(1��)��1 = 0 (A.3)

@L
@kt(i; j)

= �rt + �t��ztkt(i; j)���1ht(i; j)(1��)� = 0: (A.4)

The Lagrange multiplier, �t; is obtained by combining (A.3) and (A.4) then applying Shep-

hard�s lemma, and amounts to the marginal cost, mct(i; j); of producing one more variety:

mct(i; j) =
�
ztkt(i; j)

��ht(i; j)
(1��)�� 1��� w1��t r�t

z
1
�

t �(1� �)1����
(A.5)

=

�
yt(i; j) + �+

�f
Nt(i)

� 1��
� w1��t r�t

z
1
�

t �(1� �)1����
:

Substituting (A.1) into (A.2) and some algebra yields

yt(i; j)� �
yt(i; j)

pt(i; j)
[pt(i; j)�mct(i; j)] +Z Nt(i)

0

yt(i; k)

pt(i; j)
[pt(i; k)�mct(i; k)] dk

�

Nt(i)Mt

�
pt(i; j)

Pt

�1��
= 0:

Substituting (3) for yt(i; j), the above equation simpli�es to

PtYt

�
1� �

pt(i; j)�mct(i; j)

pt(i; j)

�
+ �

Z Nt(i)

0

yt(i; k) [pt(i; k)�mct(i; k)] dk = 0:

As the second term of this equation is the same for all j 2 [0; Nt(i)]; this implies that �rm

i will charge the same price for all of its varieties.14 Hence, pt(i; j) = pt(i; k) = pt(i) = Pt(i)

and mct(i; j) = mct(i): Some algebra gives

�t(i) �
pt(i)

mct(i)
=

�[1� �t(i)]

�[1� �t(i)]� 1
: (A.6)

where

�t(i) �
�
pt(i)

Pt

�1��
M�1

t =
Pt(i)Yt(i)

PtYt
(A.7)

is �rm i�s market share.

A.2 Product scope

This Appendix derives the �rms�optimal product scope assuming increasing marginal costs,

� < 1: Since the �rm will charge the same price for all of its varieties, it will produce the

14Marginal cost depends on the level of production if � 6= 1 but note that each variety faces the same
demand curve.
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same quantity of each variety. Hence, the costs of production areZ Nt(i)

0

wtht(i; j) + rtkt(i; j)dj = �Nt(i)mct(i)ztkt(i)
��ht(i)

(1��)�

= �Nt(i)mct(i)yt(i) +Nt(i)�+ �f

Pro�ts can then be written as

�t(i) =

�
pt(i)�mct(i)�

pt(i)

�
PtYt�t(i)�mct(i)�[Nt(i)�+ �f ]: (A.8)

Firm i takes the number of �rms and their product scopes as given and maximizes its pro�ts

with respect to Nt(i) by taking account the e¤ect of its product scope decision on its own

and all other producers� prices and marginal costs.15 After some algebra, the �rst-order

condition is

@�t(i)

@Nt(i)
=

 
1� � + ��

�
pt(i)�mct(i)

pt(i)

�2!
PtYt

@�t(i)

@Nt(i)
�mct(i)�� (A.9)

+Yt�t(i)

�
pt(i)�mct(i)�

pt(i)

�
@Pt
@Nt(i)

� �[Nt(i)�+ �f ]
@mct(i)

@Nt(i)
= 0:

Now to derive @�t(i)=@Nt(i), @Pt=@Nt(i); @mct(i)=@Nt(i); then substitute in (A.9) to obtain

�rm i�s product scope. From (A.7):

@�t(i)

@Nt(i)
= (1� �)

�t(i)

pt(i)

@pt(i)

@Nt(i)
+ (� � 1)�t(i)

Pt

@Pt
@Nt(i)

: (A.10)

Note that the second term on the right hand side of (A.10) would not be present in the case

of monopolistic competition. As will be shown later, @pt(i)=@Nt(i) and @Pt=@Nt(i) are both

negative. From (A.6):

@pt(i)

@Nt(i)
=
�t(i)[�t(i)� 1]mct(i)

1� �t(i)

@�t(i)

@Nt(i)
+ �t(i)

@mct(i)

@Nt(i)
: (A.11)

Since pt(i) = Pt(i); the aggregate price index can be written as

Pt =M
1

��1
t

 
MtX
k=1

pt(k)
1��

! 1
1��

and
@Pt
@Nt(i)

= P �
tM

�1
t

"
MtX
k=1

pt(k)
�� @pt(k)

@Nt(i)

#
: (A.12)

15Note that from (A.5) if � 6= 1 then the �rm internalises the e¤ect of the product scope on its marginal
costs.
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Under symmetry where all �rms start o¤ identical with pt(i) = pt(k) = pt; this is equal to

@Pt
@Nt(i)

=

�
pt
Pt

���
M�1

t

�
(Mt � 1)

@pt(k)

@Nt(i)
+
@pt(i)

@Nt(i)

�
(A.13)

and using (A.11) can be written as16

@Pt
@Nt(i)

=

�
pt
Pt

���
�t
Mt

�
(Mt � 1)

@mct(k)

@Nt(i)
+
@mct(i)

@Nt(i)

�
: (A.14)

From (A.5)17

@mct(i)

@Nt(i)
=

1� �

�
mct(i)

�
yt(i) + �+

�f
Nt(i)

��1
��

� yt(i)

Nt(i)
� �

yt(i)

pt(i)

@pt(i)

@Nt(i)
+ �

yt(i)

Pt

@Pt
@Nt(i)

�
�f

Nt(i)2

�

@mct(k)

@Nt(i)
=

1� �

�
mct(k)

�
yt(k) + �+

�f
Nt(k)

��1
��

��yt(k)
pt(k)

@pt(k)

@Nt(i)
+ �

yt(k)

Pt

@Pt
@Nt(i)

�
:

Now assuming symmetry, setting the price index as the numeraire Pt = pt = 1; and using

(A.13):

@mct(i)

@Nt(i)
=

1� �

�
mct

�
yt + �+

�f
Nt

��1
��

� yt
Nt

�
�f
Nt

2
+ �yt

�
Mt � 1
Mt

@pt(k)

@Nt(i)
+
1�Mt

Mt

@pt(i)

@Nt(i)

��
@mct(k)

@Nt(i)
=
1� �

�
mct

�
yt + �+

�f
Nt

��1
�yt

�
� 1

Mt

@pt(k)

@Nt(i)
+
1

Mt

@pt(i)

@Nt(i)

�
:

Now use these in (A.14) to get

@Pt
@Nt(i)

=
1

Mt

� � 1
�

�
yt + �+

�f
Nt

��1�
yt
Nt

+
�f
Nt

2

�
:

Manipulating the symmetric equilibrium version of the zero pro�t condition (A.8) gives
�MtNt+�fMt

Yt
= �t

�
� 1: Then, noting that yt = Yt

MtNt
the above simpli�es to

@Pt
@Nt(i)

=
(� � 1)(1 + �ft )

�tMtNt

< 0 (A.15)

16Note that
MtX
k=1

�t(k) = 1: Then
MtX
k=1

@�t(k)
@Nt(i)

= 0, which under symmetry is (Mt � 1) @�t(k)@Nt(i)
+ @�t(i)

@Nt(i)
= 0:

17Since the marginal cost and price is the same for all �rm i�s varieties, yt(i; j) = yt(i; k) = yt(i):
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where �ft �
�fMt

Yt
is the share of �rm-level �xed costs in �nal output. Similar to the models

with the love of variety, an expansion of the product scope reduces the aggregate price index.
@mct(i)
@Nt(i)

can be rearranged to

@mct(i)

@Nt(i)
=
� � 1
�2t

�
1

Nt

+ �
@pt(i)

@Nt(i)
� �

@Pt
@Nt(i)

+ �ft
1

Nt

�
: (A.16)

The next step is to �nd @pt(i)
@Nt(i)

: Combining (A.10) and (A.11):

@pt(i)

@Nt(i)
=
�t(i)[�t(i)� 1]mct(i)

1� �t(i)

�
(1� �)

�t(i)

pt(i)

@pt(i)

@Nt(i)
+ (� � 1)�t(i)

Pt

@Pt
@Nt(i)

�
+ �t(i)

@mct(i)

@Nt(i)

Applying symmetry with �t(i) = 1=Mt and some algebra gives

@pt(i)

@Nt(i)
=
Mt +

(�t�1)(��1)
Mt�1 + (1��)�

�t

1 + (�t�1)(��1)
Mt�1 + (1��)�

�t

@Pt
@Nt(i)

< 0: (A.17)

Hence, @pt(i)
@Nt(i)

< @Pt
@Nt(i)

< 0: From (A.10) and (A.11) it is now clear that @�t(i)
@Nt(i)

> 0 and
@mct(i)
@Nt(i)

< 0: An expansion of the product scope reduces the prices of the �rm�s varieties and

increases its market share. This stands in contrast to Minniti and Turino (2013) where due

to the love of variety, the �rm would increase its prices. Using (A.10), under symmetry (A.9)

can be written as

@�t(i)

@Nt(i)
=

 
1� � + ��

�
1� 1

�t

�2!�
(1� �)

@pt(i)

@Nt(i)
+ (� � 1) @Pt

@Nt(i)

�
+

�
1� �

�t

�
@Pt
@Nt(i)

� (�t � �)
@mct(i)

@Nt(i)
� ��

1

�t

Mt

Yt
= 0:

Finally, (A.15), (A.16), (A.17), and (10) are used in the above to solve for the product scope:

Nt =
1� �

�

�t
�

Yt
Mt

"
1 + �ft
�t

�
1� 1

Mt

� (Mt � 1)[�(Mt � 1)�Mt]

Mt([�(Mt � 1)�Mt][�(Mt � 1)(� � 1)� �Mt]� �)

�#
(A.18)

Reminiscent of Minniti and Turino (2013), the big term in square brackets is less than one

and is increasing in Mt (converging to unity as the number of �rms becomes very large).

An increase in the �rm�s product scope reduces its marginal costs and prices. Other �rms

respond by reducing their prices and to lower this price competition �rms under-expand

their product scopes relative to the case of monopolistic competition where such strategic

interactions are absent. This strategic e¤ect diminishes as the number of �rms increases and
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this gives an incentive to introduce new varieties. Recall the share of �xed costs in �nal

output:

�t �
�MtNt + �fMt

Yt
=
�t
�
� 1:

Then, �t = �
f
t +�

v
t together with (A.18) solves for �

f
t � �fMt=Yt and �vt � �MtNt=Yt: As

the number of �rms becomes very large, these cost shares approach the levels in the monopo-

listic competition version of the model (see Appendix A.3). As the markup is countercyclical,

it is clear that @�=@M < 0: It can also be shown that @�f=@M < 0 and @�v=@M > 0: Firm

entry leads to an expansion of product scopes and increases the variety-level �xed costs as a

fraction of total output.

A.3 Monopolistic competition

This Appendix shows that under monopolistic competition, markups and the product scope

are constant over the business cycle. When �rms are too small to in�uence the aggregate

price index, Pt; the last term in (A.1) is absent and the markup is constant at � = �=(��1):
Pro�ts can be written as

�t(i) =
�� �

�
PtYt�t(i)�mct(i)�(Nt(i)�+ �f )

where the market share is

�t(i) =

�
mct(i)�

Pt

�1��
M�1

t

The �rst-order condition is

@�t(i)

@Nt(i)
= �

�
�
�� �

�
PtYt

�t(i)

pt(i)
+ �(Nt(i)�+ �f )

�
@mct(i)

@Nt(i)
�mct(i)�� = 0

and from (A.5)

@mct(i)

@Nt(i)
=

�
�
yt(i)
Nt(i)

+
�f

Nt(i)2

�
mct(i)

�
1��

�
yt(i) + �+

�f
Nt(i)

�
+ �yt(i)

:

Clearly, if � < 1; then @pt(i)
@Nt(i)

= �@mct(i)
@Nt(i)

< 0. As in the previous section,
�MtNt+�fMt

Yt
= �

�
� 1

is obtained from the zero pro�t condition. Then, putting these together under symmetry

and some algebra gives

�vt =
�
�
�
�
� 1
��
1 + �ft

�
�
1�� + �

(A.19)
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where once again �ft �
�fMt

Yt
and �vt � �MtNt

Yt
: With constant markups and zero pro�ts each

period, these cost shares are constant each period. Using (A.19) and �ft + �
v
t =

�
�
� 1 then

gives �ft = �� 1 and �vt = �
�
� �: Since �ft is constant, the number of �rms is proportional

to �nal output and the product scope is constant:

N =
1� �

�

�

�

Yt
Mt

=
1� �

�

�f
�
�:

Parameter � has no e¤ect on local dynamics as output per �rm and output per variety are

constant. The dynamics of the model are identical to the constant markup mono-product

model in Pavlov and Weder (2012) without the love of variety e¤ects. Hence, indeterminacy

cannot arise in this version of the model.

A.4 Data sources

This Appendix details the source and construction of the U.S. data used in Section 5. All

data is quarterly and for the period 1955:I-2007:IV.

1. Gross Domestic Product. Seasonally adjusted at annual rates, billions of chained

(2009) dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.6.

2. Gross Domestic Product. Seasonally adjusted at annual rates, billions of dollars.

Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

3. Personal Consumption Expenditures, Nondurable Goods. Seasonally adjusted at

annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

4. Personal Consumption Expenditures, Services. Seasonally adjusted at annual rates,

billions of dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

5. Gross Private Domestic Investment, Fixed Investment, Residential. Seasonally ad-

justed at annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA

Table 1.1.5.

6. Gross Private Domestic Investment, Fixed Investment, Nonresidential. Seasonally

adjusted at annual rates, billions of dollars. Source: Bureau of Economic Analysis, NIPA

Table 1.1.5.

7. Government Consumption Expenditures. Seasonally adjusted at annual rates, billions

of dollars. Source: Bureau of Economic Analysis, NIPA Table 3.9.5.
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8. Government Gross Investment. Seasonally adjusted at annual rates, billions of dollars.

Source: Bureau of Economic Analysis, NIPA Table 3.9.5.

9. Nonfarm Business Hours. Index 2009=100, seasonally adjusted. Source: Bureau of

Labor Statistics, Series Id: PRS85006033.

10. Civilian Noninstitutional Population. 16 years and over, thousands. Source: Bureau

of Labor Statistics, Series Id: LNU00000000Q.

11. GDP De�ator = (2)=(1):

12. Real Per Capita Output, Yt = (1)=(10):

13. Real Per Capita Consumption, Ct = [(3) + (4)]=(11)=(10):

14. Real Per Capita Investment, Xt = [(5) + (6)]=(11)=(10):

15. Real Per Capita Government Expenditures, Gt = [(7) + (8)]=(11)=(10):

16. Per Capita Hours Worked, Ht = (9)=(10):

A.5 Alternative markup calibrations

Table A1 presents estimation results for two alternative markup calibrations: � = 1:2 and

� = 1:4: Second moments and variance decompositions are virtually identical to Tables 2

and 3, and are not presented to conserve space. The most noticeable change is the higher

� and lower � when the calibrated � is lower. This is due to parameters � and � jointly

determining the elasticity of the markup (recall Section 3). A lower � weakens the ampli�ca-

tion mechanism from markup �uctuations and data then favors stronger ampli�cation from

product scope variations via lower variety-level returns to scale.
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Table A1: Posterior distributions for alternative markup calibrations
� = 1:2 � = 1:4

Name Mean 90% Interval Mean 90% Interval
� 0.880 [0.870,0.890] 0.966 [0.948,0.985]
� 22.492 [22.200,22.723] 13.391 [11.333,15.393]
 A 0.003 [0.000,0.005] 0.016 [0.004,0.027]
 � 0.989 [0.984,0.993] 0.989 [0.984,0.993]
 g 0.991 [0.987,0.995] 0.991 [0.987,0.995]
 ag 0.980 [0.969,0.993] 0.974 [0.959,0.990]
�s 0.540 [0.515,0.566] 0.526 [0.497,0.554]
�A 0.792 [0.749,0.836] 0.705 [0.658,0.751]
�� 0.461 [0.444,0.479] 0.456 [0.438,0.473]
�g 1.104 [1.036,1.168] 1.114 [1.047,1.179]
�m:e: 0.280 [0.279,0.280] 0.280 [0.279,0.280]

A -0.529 [-0.595,-0.465] -0.662 [-0.748,-0.577]

� 0.781 [0.667,0.885] 0.757 [0.637,0.880]

g 0.316 [0.270,0.362] 0.342 [0.292,0.391]

Prior distributions are identical to those from Table 1.
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