Degree type
PhD
Closing date
1 February 2025
Campus
Hobart
Citizenship requirement
Domestic / International
About the research project
The mass loss of Antarctic ice shelves will govern whether global sea levels rise 1.1 m by 2100 or 15 m by 2500. The fracture and calving process of icebergs accounts for almost 50% of mass lost from the Antarctic ice shelves. Thus, accurate representation of the fracture and calving process of the icebergs is the key to reduce uncertainties in the prediction of future sea level rise. However, it remains elusive and current predictions are based on simplified physics and do not reflect local stress – fracture interactions. The application of discrete element models has represented a substantial advance by allowing iceberg calving processes to be simulated explicitly but is prohibitively computational expensive when applied to the large spatial and timescales of Multiphysics thermo-hydro-mechanical (THM) coupling Antarctic iceberg calving. This project looks to revolutionise our ability to accurately predict the fracture and calving process of the Antarctic icebergs using a novel hybrid finite-discrete element method (HFDEM) through implementing a THM coupling model. The coupling model will first be calibrated against laboratory experiments on the deformation and fracture of ice samples conducted at Ice Mechanics Lab of IMAS and then be applied to the fracture and calving process of Totten Glacier and Denman Glacier in East Antarctica. Numerical modellings will focus on reproducing current spatial distribution of fracture on the ice shelves, then progress to simulate the change in modelled fracture distribution as the ice shelves thin and retreat under future global warming scenarios.
This project builds on a substantial body of work by Dr Hongyuan Liu's team in developing and parallelizing HFDEM as an innovative and efficient numerical tool to model the fracture process of brittle materials and involves in collaborations with Dr Sue Cook and Prof Poul Christoffersen at IMAS.
Explore more Antarctic and Southern Ocean projects
Explore more Climate Change projects
Primary Supervisor
Funding
Applicants will be considered for a Research Training Program (RTP) scholarship or Tasmania Graduate Research Scholarship (TGRS) which, if successful, provides:
- a living allowance stipend of $33,511 per annum (2025 rate, indexed annually) for 3.5 years
- a relocation allowance of up to $2,000
- a tuition fees offset covering the cost of tuition fees for up to four years (domestic applicants only)
If successful, international applicants will receive a University of Tasmania Fees Offset for up to four years.
As part of the application process you may indicate if you do not wish to be considered for scholarship funding.
Other funding opportunities and fees
For further information regarding other scholarships on offer, and the various fees of undertaking a research degree, please visit Scholarships and fees.
Eligibility
Applicants should review the Higher Degree by Research minimum entry requirements.
Ensure your eligibility for the scholarship round by referring to our Key Dates.
Additional eligibility criteria specific to this project/scholarship:
- Applicants must be able to undertake the project on-campus
Selection Criteria
The project is competitively assessed and awarded. Selection is based on academic merit and suitability to the project as determined by the College.
Additional essential selection criteria specific to this project:
- First-class honours degree or master degree in the area of civil engineering or closely related discipline
Additional desirable selection criteria specific to this project:
- Track-record of high-quality journal publications
- Excellent communication skills in both spoken and written English
- Numerical simulation skills such as DEM, FEM and FVM
- Other related laboratory or numerical competence
Application process
- Select your project, and check that you meet the eligibility and selection criteria, including citizenship;
- Contact Dr Hong Liu to discuss your suitability and the project's requirements; and
- In your application:
- Copy and paste the title of the project from this advertisement into your application. If you don’t correctly do this your application may be rejected.
- Submit a signed supervisory support form, a CV including contact details of 2 referees and your project research proposal.
- Apply prior to 1 February 2025.
Full details of the application process can be found under the 'How to apply' section at Research degrees.
Following the closing date applications will be assessed within the College. Applicants should expect to receive notification of the outcome by email by the advertised outcome date.
Apply now Explore other projects